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Phenotype control and elimination of variables in Boolean networks
Overview

Motivation
e Model reduction is common practice, including in Boolean modeling community

- especially for dimension reduction (variable elimination/lumping)
- usual fallback strategy when initial model is too large

e Control/reprogramming is a prominent application of Boolean networks

- predict mutations/interventions to enforce long-term properties

e Question: can we do both at the same time?

This talk
e Theoretical results on robustness of control predictions to a usual model reduction

e Spoiler: mostly negative results &2 EXCEPT for a few settings &
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Phenotype control and elimination of variables in Boolean networks

Boolean networks as models of biological processes

Boolean network dynamics Cellular differentiation/fate decision
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Phenotype control and elimination of variables in Boolean networks

Boolean networks: definition, dynamics
Function f - B — B™ with B={0,1)}

f : B™ — B isthe local function of component i € {1, ...
(}

Configuration: x € B" x; is the state of component i

+ semantics (update mode) for computing next configurations
= discrete dynamical system

Example with n = 3 synchronous (parallel) transition
fi(z) = =y 000 — 110
J 2(33) |
fz(x) = —x1 A 29
£(000) = 110 OO{\ 100

fully asynchronous transition

Tonello & Paulevé

Influence graph



Phenotype control and elimination of variables in Boolean networks

Attractors
Property of dynamics of f

Definition

Subset-smallest set of configurations closed by transitions

= terminal strongly connected components of transition graph

= fixed points: attractors with a single configuration

= highly dependent on the update mode

f1(x
fa(x
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Phenotype control and elimination of variables in Boolean networks
Trap spaces of Boolean networks
Property of f — independant of the update mode

Definition I H
e e
A trap space is a subcube of B" closed by f 010 — 110
= subcube can be characterized as a vector in {0,1,*}" :
= subcube T is a trap space of fiff vx € T, f(x) € T O(I)l --——- 101
_ -7 /
X) =X -
hx) ==, 100
Minimal trap spaces: fa(x) = x3
Smallest trap spaces by vertices inclusion f3 (X) — not X» and X3

= Fixed points of f are minimal trap spaces
= Each minimal trap space encloses at least one attractor with any update mode

e Minimal trap spaces are exactly the attractors of the Most Permissive update mode
(which accounts for quantitative refinements of the BNs) [P et al., Nature Comm 2020]
also 1-1 with update mode capturing single-threshold Multivalued networks [Naldi et al., Natural Comp. 2023]
= relevant and robust feature for reasoning on long-term dynamics
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Phenotype control and elimination of variables in Boolean networks

Phenotype control / reprogramming

Phenotype: subcube P - fixed components are markers of phenotype
Control strategy: subcube S - freeze some components (different than phenotype) to a fixed value

We note C(f,S) the controled BN

e control of attractors (for a given update mode) Example with P = *1* and S = **1
= all attractors of C(f,S) are within P

e control of minimal trap spaces (= attractors of MP)
= all minimal trap spaces of C(f,S) are within P

x9 =1

e control by value propagation only
= constant propagation of C(f,S) falls within P
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Phenotype control and elimination of variables in Boolean networks

Reduction of Boolean networks by variable elimination

e Introduced for Boolean networks by Naldi et al in 2009
e General idea: remove a non-autoregulated component (variable)

+ replace all occurences of the component by its function
Exemple:

f4(X) = X3 OI X5 ) f4(X) = X3 Or (X4 and XZ)

f5(X) = x4 and x,

e Reduces dimension, and can have a strong effect on the local functions of the other components

e Compatible interpretation: always update the component before the others
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Phenotype control and elimination of variables in Boolean networks

Reduction of Boolean networks by variable elimination: effect

(f(x, x,) O o(x)
fa(x, x,) \ A O 7

£ Q no ()_<J,Xn)
n—1(X, xp) < (O S -
L fn(x, 0) = fp(x, 1) (%, xa) " (x,%,)
elimination elimination elimination
of n of n of n
fi(x, f2(x, 0)) \\:> ,,;%O ¢ - xJ

fa(x, f(x, 0)) TS j

p(F) =1 O, 7
: ///_’,EO X' ------ X

foa(x f(x,0) SO

\/
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Phenotype control and elimination of variables in Boolean networks

Reduction of Boolean networks by variable elimination: some properties

e If there is a transition in the reduced BN, there is a corresponding transition in the initial network
= can cut transitions, and thus trajectories, and thus impact attractors

e Preserves fixed points (one to one correspondence)

e Prior work [Tonello & P @CMSB23]: computation of attractors of a BN from its reduction

Tonello & Paulevé
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Phenotype control and elimination of variables in Boolean networks

Relation of control strategies between BN and reduced version

Main motivation: can we deduce control strategies of the BN from its reduced version?
Related question: does the reduction preserves the control strategies?

e Can the reduction introduce control strategies? (that do not work in the initial network)
= in general, yes. We show cases where the initial has no possible strategy, but reduced has one.

e Can the reduction lose control strategies?
= in general yes. We show cases where the reduced has no strategy, but the initial has one.

BUT for a class of BNs we demonstate the minimal trap spaces are preserved

Note: in this talk, we focus on the case where the eliminated component is not fixed in the phenotype
(we have similar results in the paper for the other case)

Tonello & Paulevé
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Phenotype control and elimination of variables in Boolean networks

Reduction can lose attractor-control strategies 01

N
0110 . 1110~ 0111 L 1111 011 . . 111
00105 1010 ~ % 1011 001 — 101

0000 2 1000 | % 1001 000 é 100\

0100 1100 0101 1101 010 110

No (a)sync-attractor
control strategy
(but S = *** js an MTS-control strategy)
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Phenotype control and elimination of variables in Boolean networks

Reduction can introduce control strategies

P = 00**

0110 » 1110 0111 « 1111

0010 £1010 — | T 00113 1011
///goooﬁ\lgggiij\ /iisggglj%1ooi\\&

0100 » 1100 0101 » 1101

No attractor/MTS-control strategy

Tonello & Paulevé

011 < 111
Y1
001 101
|
000 +— 100
AN
010 11

10

S = *** is an attractor-control
and MTS-control strategy
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Phenotype control and elimination of variables in Boolean networks

The case of mediator components

2
Mediator component: no regulator regulates a target of the component /)/T

SRR . 3 N _N
= prevents function simplification after reduction ey | \
1

\ f2(x) = x; and xg \‘ 4

( fa(x) = Ix;

3 =>

= C_I
o F=0 L) O 4
(no variable that will appear in the new target 2

functions is already in the function) Q

Theorem 3.3. Suppose that no regulator of n regulates a target of n. Then the minimal trap spaces
of f are strictly preserved by the elimination of n.

Theorem 4.3. Consider a Boolean network f and a phenotype P. Suppose that no regulator of n
regulates a target of n.

(i) If Sis an MTS-control strategy S for (f, P) with S, = x, then S,_ is an MTS-control strategy for (p(f), Pjo—1))-

(ii) If S is an MTS-control strategy S for (p(f), Pj,—1)) and P, = %, then the subspace S* is an
MTS-control strategy for (f, P).
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Phenotype control and elimination of variables in Boolean networks

Additional results in the paper

e Control (ensured) by value propagation:
quite robust (but also quite specific)

e Case whenever the variable eliminated
is fixed in the phenotype: even worst.

Behind the scenes:

e many counter-examples have been
found using automatic BN synthesis
with exhaustive search using ASP.

It also gaved us ideas of theorems :-)
(link to the code in the paper)

Tonello & Paulevé

3 CS for (f, P) = 3 CS for (p(f), Pjp—11)
3 CS for (p(f), Pjp—11) = 3 CS for (f, P)
EXEN F2n=J
AD
% XEx.4.10 | FEXA1L iaEw 412 | xEx. 4.13
MTS v Thm. 4.3
VP Y Thm. 4.6
(a) n fixed in P
3 CS for (7, P) = 3 CSfor (p(f), Pio_y))
3 CS for (p(f), Pjp—11) = 3 CS for (f, P)
EXEN F2n=J
AD XEx. 4.18
GD XEx. 4.15 XEx. 4.18
sp | XEx- 414 XEx.4.18
MTS v Thm. 4.3 XEx. 4.17 v Thm. 4.3
XVP,SD Ex. 4.7,4.16
VP vThm. 4.6 / AD. GD Thm. 4.8 vThm. 4.9

(b) n freein P
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Phenotype control and elimination of variables in Boolean networks

Wrap-up

Variable elimination in Boolean networks can have a strong impact on prediction of control strategies
e Elimination of mediator nodes does not preserve attractors (in general)

¢ Elimination of mediator nodes does preserve minimal trap spaces (because they are cool)

e Minimal trap spaces of Boolean networks are cool

= more robust to synchronism

= more robust to reduction

Future work

e Patterns preserving async attractors? Other patterns for MTSs

Tonello & Paulevé
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