Elisa Tonello, Loïc Paulevé

Freie Universitat Berlin LaBRI, CNRS, Bordeaux, France

Published in Peer Community Journal, 2024 doi:10.24072/pcjournal.452 (recommended by PCI Mathematical & Computational Biology open peer review)

Motivation

- Model reduction is common practice, including in Boolean modeling community
 - → especially for dimension reduction (variable elimination/lumping)
 - \rightarrow usual fallback strategy when initial model is too large
- Control/reprogramming is a prominent application of Boolean networks
 - → predict mutations/interventions to enforce long-term properties
- Question: can we do both at the same time?

This talk

- Theoretical results on robustness of control predictions to a usual model reduction
- Spoiler: mostly negative results 😥 EXCEPT for a few settings 😅

Phenotype control and elimination of variables in Boolean networks Boolean networks as models of biological processes

Phenotype control and elimination of variables in Boolean networks Boolean networks: definition, dynamics

Function $f: \mathbb{B}^n \to \mathbb{B}^n$ with $\mathbb{B} = \{ 0, 1 \}$ $f_i: \mathbb{B}^n \to \mathbb{B}$ is the local function of component $i \in \{1, ..., n\}$ Configuration: $x \in \mathbb{B}^n$ x_i is the state of component i

+ semantics (update mode) for computing next configurations

= discrete dynamical system

Example with n = 3 $f_1(x) = \neg x_2$ $f_2(x) = \neg x_1$ $f_3(x) = \neg x_1 \land x_2$ f(000) = 110 synchronous (parallel) transition

fully asynchronous transition

 $000 \rightarrow 110$

Attractors

Property of dynamics of f

Definition

Subset-smallest set of configurations closed by transitions

- ➡ terminal strongly connected components of transition graph
- ➡ fixed points: attractors with a single configuration
- ightarrow highly dependent on the update mode

 $f_1(\mathbf{x}) = \mathbf{x}_1$ $f_2(\mathbf{x}) = \mathbf{x}_3$ $f_3(\mathbf{x}) = \text{not } \mathbf{x}_2 \text{ and } \mathbf{x}_1$

f(110) = 100 f(100) = 101 f(101) = 111f(111) = 110

Fully asynchronous

Trap spaces of Boolean networks

Property of f – independant of the update mode

Definition

A trap space is a subcube of \mathbb{B}^n closed by f

- \blacktriangleright subcube can be characterized as a vector in $\{0,1,*\}^n$
- \blacktriangleright subcube T is a trap space of f iff $\forall x \in T, f(x) \in T$

Smallest trap spaces by vertices inclusion

- \blacktriangleright Fixed points of f are minimal trap spaces
- inclusion $f_3(\mathbf{x}) = \mathrm{not} \; \mathbf{x}_2 \; \mathrm{and} \; \mathbf{x}_1$ trap spaces

 $f_1(\mathbf{x}) = \mathbf{x}_1$

 $f_2(\mathbf{x}) = \mathbf{x}_3$

- ➡ Each minimal trap space encloses at least one attractor with any update mode
- Minimal trap spaces are exactly the attractors of the Most Permissive update mode (which accounts for quantitative refinements of the BNs) [P et al., Nature Comm 2020] also 1-1 with update mode capturing single-threshold Multivalued networks [Naldi et al., Natural Comp. 2023]
 relevant and robust feature for reasoning on long-term dynamics

Tonello & Paulevé

111

()11 _____

001 - --- 101

010

Trap spaces of Boolean networks

Property of f – independant of the update mode

Definition

A trap space is a subcube of \mathbb{B}^n closed by f

- \blacktriangleright subcube can be characterized as a vector in $\{0,1,*\}^n$
- \blacktriangleright subcube T is a trap space of f iff $\forall x \in T, f(x) \in T$

Smallest trap spaces by vertices inclusion

- \blacktriangleright Fixed points of f are minimal trap spaces
- → Each minimal trap space encloses at least one attractor with any update mode
- Minimal trap spaces are exactly the attractors of the Most Permissive update mode

 (which accounts for quantitative refinements of the BNs) [P et al., Nature Comm 2020]
 also 1-1 with update mode capturing single-threshold Multivalued networks [Naldi et al., Natural Comp. 2023]
 relevant and robust feature for reasoning on long-term dynamics

Tonello & Paulevé

f(101) = 111

f(111) = 110

Trap spaces of Boolean networks

Property of f – independant of the update mode

Definition

A trap space is a subcube of \mathbb{B}^n closed by f

- \blacktriangleright subcube can be characterized as a vector in $\{0,1,*\}^n$
- \blacktriangleright subcube T is a trap space of f iff $\forall x \in T, f(x) \in T$

Smallest trap spaces by vertices inclusion

- \blacktriangleright Fixed points of f are minimal trap spaces
- → Each minimal trap space encloses at least one attractor with any update mode
- Minimal trap spaces are exactly the attractors of the Most Permissive update mode (which accounts for quantitative refinements of the BNs) [P et al., Nature Comm 2020] also 1-1 with update mode capturing single-threshold Multivalued networks [Naldi et al., Natural Comp. 2023]

relevant and robust feature for reasoning on long-term dynamics

Tonello & Paulevé

111

101

f(110) = 100

f(100) = 101

f(101) = 111

f(111) = 110

110

100

 $f_3(\mathbf{x}) = \text{not } \mathbf{x}_2 \text{ and } \mathbf{x}_1$

 $f_1(\mathbf{x}) = \mathbf{x}_1$

 $f_2(\mathbf{x}) = \mathbf{x}_3$

()1()

Trap spaces of Boolean networks

Property of f – independant of the update mode

Definition

A trap space is a subcube of \mathbb{B}^n closed by f

- \blacktriangleright subcube can be characterized as a vector in $\{0,1,*\}^n$
- \blacktriangleright subcube T is a trap space of *f* iff $\forall x \in T, f(x) \in T$

Smallest trap spaces by vertices inclusion

- \blacktriangleright Fixed points of f are minimal trap spaces
- → Each minimal trap space encloses at least one attractor with any update mode
- Minimal trap spaces are exactly the attractors of the Most Permissive update mode (which accounts for quantitative refinements of the BNs) [P et al., Nature Comm 2020] also 1-1 with update mode capturing single-threshold Multivalued networks [Naldi et al., Natural Comp. 2023]

relevant and robust feature for reasoning on long-term dynamics

Tonello & Paulevé

111

101

f(110) = 100

f(100) = 101

f(101) = 111

f(111) = 110

110

100

()1()

 $f_1(\mathbf{x}) = \mathbf{x}_1$

 $f_2(\mathbf{x}) = \mathbf{x}_3$

 $f_3(\mathbf{x}) = \text{not } \mathbf{x}_2 \text{ and } \mathbf{x}_1$

Trap spaces of Boolean networks

Property of f – independant of the update mode

Definition

A trap space is a subcube of \mathbb{B}^n closed by f

- \blacktriangleright subcube can be characterized as a vector in $\{0,1,*\}^n$
- \blacktriangleright subcube T is a trap space of *f* iff $\forall x \in T, f(x) \in T$

Smallest trap spaces by vertices inclusion

- \blacktriangleright Fixed points of f are minimal trap spaces
- → Each minimal trap space encloses at least one attractor with any update mode
- Minimal trap spaces are exactly the attractors of the Most Permissive update mode

 (which accounts for quantitative refinements of the BNs) [P et al., Nature Comm 2020]
 also 1-1 with update mode capturing single-threshold Multivalued networks [Naldi et al., Natural Comp. 2023]
 relevant and robust feature for reasoning on long-term dynamics

 $f_1(\mathbf{x}) = \mathbf{x}_1$

 $f_2(\mathbf{x}) = \mathbf{x}_3$

 $f_3(\mathbf{x}) = \text{not } \mathbf{x}_2 \text{ and } \mathbf{x}_1$

Tonello & Paulevé

111

101

f(110) = 100

f(100) = 101

f(101) = 111

f(111) = 110

Trap spaces of Boolean networks

Property of f – independant of the update mode

Definition

A trap space is a subcube of \mathbb{B}^n closed by f

- \blacktriangleright subcube can be characterized as a vector in $\{0,1,*\}^n$
- \blacktriangleright subcube T is a trap space of *f* iff $\forall x \in T, f(x) \in T$

Smallest trap spaces by vertices inclusion

- \blacktriangleright Fixed points of f are minimal trap spaces
- → Each minimal trap space encloses at least one attractor with any update mode
- Minimal trap spaces are exactly the attractors of the Most Permissive update mode

 (which accounts for quantitative refinements of the BNs) [P et al., Nature Comm 2020]
 also 1-1 with update mode capturing single-threshold Multivalued networks [Naldi et al., Natural Comp. 2023]
 relevant and robust feature for reasoning on long-term dynamics

Tonello & Paulevé

f(100) = 101

f(101) = 111

f(111) = 110

Trap spaces of Boolean networks

Property of f – independant of the update mode

Definition

A trap space is a subcube of \mathbb{B}^n closed by f

- \blacktriangleright subcube can be characterized as a vector in $\{0,1,*\}^n$
- \blacktriangleright subcube T is a trap space of *f* iff $\forall x \in T, f(x) \in T$

Smallest trap spaces by vertices inclusion

- \blacktriangleright Fixed points of f are minimal trap spaces
- → Each minimal trap space encloses at least one attractor with any update mode
- Minimal trap spaces are exactly the attractors of the Most Permissive update mode

 (which accounts for quantitative refinements of the BNs) [P et al., Nature Comm 2020]
 also 1-1 with update mode capturing single-threshold Multivalued networks [Naldi et al., Natural Comp. 2023]
 relevant and robust feature for reasoning on long-term dynamics

Trap spaces of Boolean networks

Property of f – independant of the update mode

Definition

A trap space is a subcube of \mathbb{B}^n closed by f

- \rightarrow subcube can be characterized as a vector in $\{0,1,*\}^n$
- \blacktriangleright subcube T is a trap space of f iff $\forall \mathbf{x} \in T, f(\mathbf{x}) \in T$

Smallest trap spaces by vertices inclusion

- \rightarrow Fixed points of f are minimal trap spaces
- Each minimal trap space encloses at least one attractor with any update mode
- Minimal trap spaces are exactly the attractors of the Most Permissive update mode (which accounts for quantitative refinements of the BNs) [P et al., Nature Comm 2020] also 1-1 with update mode capturing single-threshold Multivalued networks [Naldi et al., Natural Comp. 2023] relevant and robust feature for reasoning on long-term dynamics

Tonello & Paulevé

6

f(100) = 101

f(101) = 111

f(111) = 110

 $f_3(\mathbf{x}) = \text{not } \mathbf{x}_2 \text{ and } \mathbf{x}_1$

Phenotype control and elimination of variables in Boolean networks **Phenotype control / reprogramming**

Phenotype: subcube P - fixed components are markers of phenotype Control strategy: subcube S - freeze some components (different than phenotype) to a fixed value

We note C(f,S) the controled BN

- control of attractors (for a given update mode)
 - \rightarrow all attractors of C(*f*,S) are within P
- control of minimal trap spaces (= attractors of MP)
 → all minimal trap spaces of C(f,S) are within P
- control by value propagation only
 - \rightarrow constant propagation of C(*f*,S) falls within P

Example with $P = *1^*$ and S = **1

Phenotype control and elimination of variables in Boolean networks **Phenotype control / reprogramming**

Phenotype: subcube P - fixed components are markers of phenotype Control strategy: subcube S - freeze some components (different than phenotype) to a fixed value

We note C(f,S) the controled BN

- control of attractors (for a given update mode)
 - \rightarrow all attractors of C(*f*,S) are within P
- control of minimal trap spaces (= attractors of MP)
 → all minimal trap spaces of C(*f*,S) are within P
- control by value propagation only
 - \rightarrow constant propagation of C(*f*,S) falls within P

Example with $P = *1^*$ and S = **1

Phenotype control and elimination of variables in Boolean networks **Phenotype control / reprogramming**

Phenotype: subcube P - fixed components are markers of phenotype Control strategy: subcube S - freeze some components (different than phenotype) to a fixed value

We note C(f,S) the controled BN

- control of attractors (for a given update mode)
 - \rightarrow all attractors of C(*f*,S) are within P
- control of minimal trap spaces (= attractors of MP)
 → all minimal trap spaces of C(*f*,S) are within P
- control by value propagation only
 - \rightarrow constant propagation of C(*f*,S) falls within P

Example with $P = *1^*$ and S = **1

Phenotype control and elimination of variables in Boolean networks Reduction of Boolean networks by variable elimination

- Introduced for Boolean networks by Naldi et al in 2009
- General idea: remove a non-autoregulated component (variable)

+ replace all occurences of the component by its function

- Reduces dimension, and can have a strong effect on the local functions of the other components
- Compatible interpretation: always update the component before the others

Phenotype control and elimination of variables in Boolean networks Reduction of Boolean networks by variable elimination: effect

 $f = \begin{cases} f_1(x, x_n) \\ f_2(x, x_n) \\ \vdots \\ f_{n-1}(x, x_n) \\ f_n(x, 0) = f_n(x, 1) \end{cases}$ $\overline{\sigma(x)}^{J}$ $(\bar{x}^i, x_n) \xleftarrow{i} (x, x_n)$ elimination elimination of *n* elimination of n $\rho(f) = \begin{cases} f_1(x, f_n(x, 0)) \\ f_2(x, f_n(x, 0)) \\ \vdots \\ f_{n-1}(x, f_n(x, 0)) \end{cases}$

Phenotype control and elimination of variables in Boolean networks Reduction of Boolean networks by variable elimination: some properties

- If there is a transition in the reduced BN, there is a corresponding transition in the initial network
 - ← can cut transitions, and thus trajectories, and thus impact attractors
- Preserves fixed points (one to one correspondence)

• Prior work [Tonello & P @CMSB23]: computation of attractors of a BN from its reduction

Phenotype control and elimination of variables in Boolean networks Relation of control strategies between BN and reduced version

Main motivation: can we deduce control strategies of the BN from its reduced version? Related question: does the reduction preserves the control strategies?

- Can the reduction introduce control strategies? (that do not work in the initial network)
- → in general, **yes**. We show cases where the initial has no possible strategy, but reduced has one.
- Can the reduction lose control strategies?
- → in general **yes**. We show cases where the reduced has no strategy, but the initial has one.

BUT for a class of BNs we demonstate the minimal trap spaces are preserved

Note: in this talk, we focus on the case where the eliminated component is not fixed in the phenotype (we have similar results in the paper for the other case)

No attractor/MTS-control strategy

S = *** is an attractor-control and MTS-control strategy

Phenotype control and elimination of variables in Boolean networks The case of mediator components

Mediator component: no regulator regulates a target of the component

→ prevents function simplification after reduction

$$f_2(x) = x_1 \text{ and } x_3$$

 $f_3(x) = !x_1$
 $=>$
 $f_2(x) = 0$

(no variable that will appear in the new target functions is already in the function)

Theorem 3.3. Suppose that no regulator of *n* regulates a target of *n*. Then the minimal trap spaces of *f* are strictly preserved by the elimination of *n*.

Theorem 4.3. Consider a Boolean network f and a phenotype P. Suppose that no regulator of n regulates a target of n.

(i) If S is an MTS-control strategy S for (f, P) with $S_n = \star$, then $S_{[n-1]}$ is an MTS-control strategy for $(\rho(f), P_{[n-1]})$.

(ii) If S is an MTS-control strategy S for $(\rho(f), P_{[n-1]})$ and $P_n = \star$, then the subspace S^{*} is an MTS-control strategy for (f, P).

Additional results in the paper

- Control (ensured) by value propagation: quite robust (but also quite specific)
- Case whenever the variable eliminated is fixed in the phenotype: even worst.

Behind the scenes:

• many counter-examples have been found using automatic BN synthesis with exhaustive search using ASP. It also gaved us ideas of theorems :-) (link to the code in the paper)

	\exists CS for $(f, P) \Rightarrow$		\exists CS for ($\rho(f)$, $P_{[n-1]}$)	
	\exists CS for $(\rho(f), P_{[n-1]})$		$\Rightarrow \exists CS \text{ for } (f, P)$	
		$I \rightarrow \eta \rightarrow J$		$I \rightarrow n \rightarrow J$
AD				
GD	x Ev 110	X Ex. 4.11	x Ev 112	Y Ev /12
SD				A LX. 4 .10
MTS		√ Thm. 4.3	-	
VP	√ Thm. 4.6		-	
(a) <i>n</i> fixed in <i>P</i>				

Variable elimination in Boolean networks can have a strong impact on prediction of control strategies

- Elimination of mediator nodes does not preserve attractors (in general)
- Elimination of mediator nodes does preserve minimal trap spaces (because they are cool)
- Minimal trap spaces of Boolean networks are cool
- ightarrow more robust to synchronism
- ➡ more robust to reduction

Future work

• Patterns preserving async attractors? Other patterns for MTSs

Thanks!

Peer Community In (PCI) & Peer Community Journal

https://peercommunityin.org/

A <u>free</u> way to have your **preprints** peer-reviewed, validated and published in open access

• 17 PCI, inc. Mathematical & Computational Biology

https://mcb.peercommunityin.org/

- preprint recommendations
- diamond open access
- supported by > 150 institutions and 22 countries