Formal methods for capturing dynamics of biological networks

Loïc Paulevé

CNRS/LRI, Univ. Paris-Sud, Univ. Paris-Saclay - Biolnfo team loic.pauleve@lri.fr http://loicpauleve.name

LaBRI - 7 Novembre 2017

Formalization of biological problems into general computer science problems

- help with automated reasoning on biological knowledge/models
- challenging: bring classes of difficult problems
 ⇒ motivation for new theoretical/technical developments
- try to attract formal computer scientists

Formal methods for capturing dynamics of biological networks

Outline

Computational models for biological processes Networks, dynamics

2 Boolean networks

Definition Properties of interest

3 Static analysis of Boolean networks by abstract interpretation

Main principle Over- and under-approximation of trajectories Applications

4 Perspectives

Outline

Computational models for biological processes Networks, dynamics

- 2 Boolean networks Definition
 - Properties of interest
- 3 Static analysis of Boolean networks by abstract interpretation
 - Main principle Over- and under-approximation of trajectories Applications

4 Perspectives

Biological processes Cell division

(source: Genentech, https://www.youtube.com/watch?v=oDjDUUhGVsI)

Biological Processes Cell differentiation

Cell identity cascading landscape

(source: Crespo et al. Stem cells 2013; 31:2127-2135)

(credits: Thomas Graf, Centre for Genomic Regulation (Spain))

Biological processes

Numerous modelling approaches

- Structure of molecules (RNA, DNA, proteins)
 ⇒ predict dockings, change of conformation/function, ...
- Quantitative models (ODEs, stochastic population models, ...)
 ⇒ track evolution of concentrations/copy number of molecules
 ⇒ requires a huge amount of precise paramaters
- Qualitative models (Boolean networks, threshold networks, ...) \Rightarrow focus on causal processes
 - \Rightarrow abstract/generic view of the system, requires few parameters
- Multi-cellular spatial models, organs, individuals, ecology, ...

No "true" model, each modelling approach is justified on its own.

Signalling and gene networks

Prediction

- Cell response w.r.t. signal+environment
- Long-term behaviours (differentiation)

Control

- Mutations/Perturbations for modifying cell behaviour
- Trans/De-differentiation

Signalling and gene networks

Prediction

- Cell response w.r.t. signal+environment
- Long-term behaviours (differentiation)

Control

- Mutations/Perturbations for modifying cell behaviour
- Trans/De-differentiation

Computational models of dynamics

- Formal verificationAutomatic reasoning

Computational models of biological networks

Network: account for **indirect influences** between **entities** of a system

[Naldi et al, PLOS Comput Biol 2010]

Computational models of biological networks

Network: account for **indirect influences** between **entities** of a system

A biological model is typically built from

- literature (tedious)
- (curated) databases: pull interactions discovered in very different experimental settings
- network inference from data: prune networks to fit with data; identify new interactions
- expert knowledge (people)

Computational models of biological networks

Network: account for **indirect influences** between **entities** of a system

A biological model is typically built from

- literature (tedious)
- (curated) databases: pull interactions discovered in very different experimental settings
- network inference from data: prune networks to fit with data; identify new interactions
- expert knowledge (people)
- \Rightarrow uncertainties / hypotheses remain
- \Rightarrow set of candidate models

Computational models of biological networks

Network: account for **indirect influences** between **entities** of a system

A biological model is typically built from

- literature (tedious)
- (curated) databases: pull interactions discovered in very different experimental settings
- network inference from data: prune networks to fit with data; identify new interactions
- expert knowledge (people)
- \Rightarrow uncertainties / hypotheses remain \Rightarrow set of candidate models

Need for efficient methods to

- validate, refine candidate models
- make predictions robust to uncertainties

Outline

Computational models for biological processes Networks, dynamics

2 Boolean networks Definition Properties of interest

3 Static analysis of Boolean networks by abstract interpretation

Main principle Over- and under-approximation of trajectories Applications

4 Perspectives

Semantics of Boolean networks

Definition (Boolean network) $f = \langle f_1, \dots, f_n \rangle$ with $f_i : \{0, 1\}^n \rightarrow \{0, 1\}$ Example:

$$f_1(x) = 0$$

$$f_2(x) = x_1 \land \neg x_2$$

$$f_3(x) = \neg x_2 \land (x_1 \lor x_3)$$

Definition (Asynchronous transition)

Irreflexixe relation $\rightarrow \subseteq \{0, 1\}^n \times \{0, 1\}^n$ such that

$$x \rightarrow y \iff \Delta(x, y) = \{i\} \land y_i = f_i(x)$$

where $\Delta(x, y) = \{i \in \{1, \dots, n\} \mid x_i \neq y_i\}$ (non-deterministic semantics)

Example

Boolean network

 $f_1(x) = 0$ $f_2(x) = x_1 \land \neg x_2$ $f_3(x) = \neg x_2 \land (x_1 \lor x_3)$

State transition graph with asynchronous updating mode

 $\langle 1, 0, 0 \rangle$

[René Thomas in Journal of Theoritical Biology, 1973] [A. Richard, J.-P. Comet, G. Bernot in Modern Formal Methods and Applications, 2006]

Example

Boolean network

 $f_1(x) = 0$ $f_2(x) = x_1 \land \neg x_2$ $f_3(x) = \neg x_2 \land (x_1 \lor x_3)$

State transition graph with asynchronous updating mode

[René Thomas in Journal of Theoritical Biology, 1973] [A. Richard, J.-P. Comet, G. Bernot in Modern Formal Methods and Applications, 2006]

Example

Boolean network

 $f_1(x) = 0$ $f_2(x) = x_1 \land \neg x_2$ $f_3(x) = \neg x_2 \land (x_1 \lor x_3)$

State transition graph with asynchronous updating mode

[René Thomas in Journal of Theoritical Biology, 1973] [A. Richard, J.-P. Comet, G. Bernot in Modern Formal Methods and Applications, 2006]

Example

Boolean network

 $f_1(x) = 0$ $f_2(x) = x_1 \land \neg x_2$ $f_3(x) = \neg x_2 \land (x_1 \lor x_3)$

State transition graph with asynchronous updating mode

[René Thomas in Journal of Theoritical Biology, 1973] [A. Richard, J.-P. Comet, G. Bernot in Modern Formal Methods and Applications, 2006]

Example

Boolean network

 $f_1(x) = 0$ $f_2(x) = x_1 \land \neg x_2$ $f_3(x) = \neg x_2 \land (x_1 \lor x_3)$

State transition graph with asynchronous updating mode

[René Thomas in Journal of Theoritical Biology, 1973] [A. Richard, J.-P. Comet, G. Bernot in Modern Formal Methods and Applications, 2006]

Example

Boolean network

 $f_1(x) = 0$ $f_2(x) = x_1 \land \neg x_2$ $f_3(x) = \neg x_2 \land (x_1 \lor x_3)$

State transition graph with asynchronous updating mode

[René Thomas in Journal of Theoritical Biology, 1973] [A. Richard, J.-P. Comet, G. Bernot in Modern Formal Methods and Applications, 2006]

Properties of interest

- Fixpoints: f(x) = x
- Attractors: smallest set of states closed by → (terminal strongly connected components)
- Reachability: there is a path from x to y

Tractability issues

Model validation (model checking)

- Combinatorial explosion of behaviours networks with 100 to 1,000 nodes: 2^{100} 10^{30} to 2^{1000} 10^{300} states
- BDDs/BMC/... have a hard time on biological networks...
- Difficult to extract comprehensive proofs of (im)possibility.

(Reachability is PSPACE-complete)

Tractability issues

Model validation (model checking)

- Combinatorial explosion of behaviours networks with 100 to 1,000 nodes: 2^{100} 10^{30} to 2^{1000} 10^{300} states
- BDDs/BMC/...have a hard time on biological networks...
- Difficult to extract comprehensive proofs of (im)possibility.

(Reachability is PSPACE-complete)

Prediction for control (e.g., perturbations to prevent/enforce behaviour)

- Model checking complexity
- + too many candidates for brute-force screening \Rightarrow deduction/abduction

Tractability issues

Model validation (model checking)

- Combinatorial explosion of behaviours networks with 100 to 1,000 nodes: 2^{100} 10^{30} to 2^{1000} 10^{300} states
- BDDs/BMC/... have a hard time on biological networks...
- Difficult to extract comprehensive proofs of (im)possibility.

(Reachability is PSPACE-complete)

Prediction for control (e.g., perturbations to prevent/enforce behaviour)

- Model checking complexity
- + too many candidates for brute-force screening \Rightarrow deduction/abduction

Network inference (find Boolean networks satisfying reachability constraints)

- Combinatorial explosion of model parameters
- Data involve time series: reachability checking complexity..

Outline

Computational models for biological processes Networks, dynamics

- 2 Boolean networks Definition
 - Properties of interest

3 Static analysis of Boolean networks by abstract interpretation

Main principle Over- and under-approximation of trajectories Applications

4 Perspectives

Abstractions for transient dynamics of Boolean Networks

Intuition: exploit the low scope of transitions (concurrency)

- Static analysis by abstract interpretation [Cousot and Cousot 77]
- Intermediate representation (Local Causality Graph) to reason on necessary/sufficient conditions for transitions
- Implementation mixes algorithms on graphs and SAT (ASP).

Basically:

Approx. of PSPACE problems with $P.e^d$ or $NP.e^d$ problems where *d* is the in-degree of nodes in the Boolean network

Transition Prime Implicants

Consider a Boolean network f where

$$f_1(x) = x_2$$

there exists 2^{n-2} transitions of the form

 $01x_2\cdots x_n \rightarrow 11x_2\cdots x_n$

Transition Prime Implicants

Consider a Boolean network f where

$$f_1(x) = x_2$$

there exists 2^{n-2} transitions of the form

$$01x_2\cdots x_n \rightarrow 11x_2\cdots x_n$$

Prime implicants of transitions

• Express the minimal cause of a node value change $v_i : a \rightsquigarrow b$

Definition

C is a prime implicants for a node value change $v_i : a \rightsquigarrow b$ iff its a conjunction of literals of the form $[v_i = d]$ such that

$$[v_i = a \land C]$$
 is a prime implicant of $[f_i(v) = b]$

We write it $\langle v_i : a \rightsquigarrow b, C \rangle$

In our case, only one transition prime implicant for $v_1 : 0 \rightsquigarrow 1$:

$$\langle \mathtt{v}_1: 0 \rightsquigarrow \mathtt{1}, [\mathtt{v}_2 = \mathtt{1}] \rangle$$

Transitions Prime Implicants

 $f_1(x) = x_2 \vee x_3$

Implicants for the transition $\langle 011 \rangle \rightarrow \langle 111 \rangle$

Transitions Prime Implicants

 $f_1(x) = x_2 \vee x_3$

Implicants for the transition $\langle 011 \rangle \rightarrow \langle 111 \rangle$

Transitions Prime Implicants

 $f_1(x) = x_2 \vee x_3$

Implicants for the transition $\langle 011 \rangle \rightarrow \langle 111 \rangle$

Transitions Prime Implicants

 $f_1(x) = x_2 \vee x_3$

Implicants for the transition $\langle 011 \rangle \rightarrow \langle 111 \rangle$

 $\Rightarrow \text{ 2 prime implicants: } \langle \mathtt{v}_1: 0 \rightsquigarrow 1, \left[\begin{array}{c} \mathtt{v}_2 = \mathtt{1} \end{array} \right] \rangle; \ \langle \mathtt{v}_1: 0 \rightsquigarrow 1, \left[\begin{array}{c} \mathtt{v}_3 = \mathtt{1} \end{array} \right] \rangle$

Transitions Prime Implicants

 $f_1(x) = x_2 \vee x_3$

Implicants for the transition $\langle 011 \rangle \rightarrow \langle 111 \rangle$

 $\Rightarrow \text{ 2 prime implicants: } \langle \mathtt{v}_1: 0 \rightsquigarrow 1, [\ \mathtt{v}_2 = 1 \] \rangle; \ \langle \mathtt{v}_1: 0 \rightsquigarrow 1, [\ \mathtt{v}_3 = 1 \] \rangle$

Implicants for the transition $\langle 100\rangle \rightarrow \langle 000\rangle$

$$\underbrace{100} \underbrace{\mathbf{v}_2 = \mathbf{0}, \mathbf{v}_3 = \mathbf{0}}_{\mathbf{000}}$$

Transitions Prime Implicants

 $f_1(x) = x_2 \vee x_3$

Implicants for the transition $\langle 011 \rangle \rightarrow \langle 111 \rangle$

 $\Rightarrow \text{ 2 prime implicants: } \langle \mathtt{v}_1: 0 \rightsquigarrow 1, [\ \mathtt{v}_2 = 1 \] \rangle; \ \langle \mathtt{v}_1: 0 \rightsquigarrow 1, [\ \mathtt{v}_3 = 1 \] \rangle$

Implicants for the transition $\langle 100\rangle \rightarrow \langle 000\rangle$

$$\underbrace{100} \xrightarrow{\mathbf{v}_2 = \mathbf{0}, \, \mathbf{v}_3 = \mathbf{0}} \underbrace{000}$$

 $\Rightarrow 1 \text{ prime implicant: } \langle \mathtt{v}_1: 1 \rightsquigarrow \mathtt{0}, [\ \mathtt{v}_2 = \mathtt{0} \ \land \ \mathtt{v}_3 = \mathtt{0} \] \rangle$

Local Causality Graph (LCG)

• Initial state $\langle 00010 \rangle$; Goal [v₁ = 1]

Local Causality Graph (LCG)

• Initial state (00010); Goal [$v_1 = 1$]

Local Causality Graph (LCG)

• Initial state $\langle 00010 \rangle$; Goal [v₁ = 1]

Local Causality Graph (LCG)

• Initial state (00010); Goal $[v_1 = 1]$

Local Causality Graph (LCG)

• Initial state $\langle 00010 \rangle$; Goal [$v_1 = 1$]

$$\mathsf{UA}(x \to^* [\mathtt{v}_1 = 1]) \Rightarrow x \to^* [\mathtt{v}_1 = 1] \Rightarrow \mathsf{OA}(x \to^* [\mathtt{v}_1 = 1])$$

Applications

Applications

Common features (markers) of all trajectories (necessary steps)

Under-approximation:

$$a_i, b_j, \cdots$$
: disable $(a_i, b_j, \cdots) \land \neg \mathsf{OA}(s \rightarrow^* g)$

Applications

mutations

Control of reachability

Under-approximation:

 $a_i, b_j, \cdots : \mathsf{lock}(a_i, b_j, \cdots) \land \neg \mathsf{OA}(s \rightarrow^* g)$

Applications

Key transitions responsible for capability loss (differentiation)

Under-approximation:

 $s_b, t_b: \mathsf{UA}(s \rightarrow^* s_b) \land \mathsf{UA}(s_b \rightarrow^* g) \land \neg \mathsf{OA}(s_b \cdot t_b \rightarrow^* g)$

Formal Approximations

Reachability [LP, M Magnin, O Roux in MSCS 2012; M Folschette, LP, M Magnin, O Roux in TCS 2015]

Over-approximation (necessary condition): OA(s →* g)
 P w/ # prime implicants

• Under-approximation (sufficient condition): $UA(s \rightarrow^* g)$ NP w/ # prime implicants

(# prime implicants: e^d in general; $\binom{d}{d/2}$ monotonous functions; much less in practice)

Cut-sets [LP, G Andrieux, H Koeppl at CAV 2013]

• UA: a_i, b_j, \cdots : disable $(a_i, b_j, \cdots) \land \neg \mathsf{OA}(s \rightarrow^* g)$

Mutations for blocking g [LP at CMSB 2017]

• UA: a_i, b_j, \cdots : lock $(a_i, b_j, \cdots) \land \neg OA(s \rightarrow^* g)$

Bifurcations [L F Fitime, C Guziolowski, O Roux, LP in BMC Algorithms for Mol Bio, 2017]

• UA: $s_b, t_b : \mathsf{UA}(s \rightarrow^* s_b) \land \mathsf{UA}(s_b \rightarrow^* g) \land \neg \mathsf{OA}(s_b \cdot t_b \rightarrow^* g)$

In practice

Software Pint - Static analyzer for dynamics of automata networks http://loicpauleve.name/pint [CMSB 2017]

- Input: Boolean/discrete networks; automata networks; 1-bounded Petri nets
- Answer-Set Programming implementation for solution enumeration (clingo)
- Scalable to networks between 100 to 10,000 nodes

Tutorial on http://tmpnb.loicpauleve.name

In practice

Software Pint - Static analyzer for dynamics of automata networks http://loicpauleve.name/pint [CMSB 2017]

- Input: Boolean/discrete networks; automata networks; 1-bounded Petri nets
- Answer-Set Programming implementation for solution enumeration (clingo)
- Scalable to networks between 100 to 10,000 nodes

Tutorial on http://tmpnb.loicpauleve.name

CaspoTS - Boolean network identification from time series data https://github.com/pauleve/caspots [BioSystems 2016]

- Input: influence graph + reachability constraints
- Ouput: all minimal Boolean networks that satisfy both constraints
- Answer-Set Programming implementation (over-approximation)
- Scalable to networks up to 50-100 nodes

Outline

Computational models for biological processes Networks, dynamics

- 2 Boolean networks
 - Definition Properties of interest
- 3 Static analysis of Boolean networks by abstract interpretation
 - Main principle Over- and under-approximation of trajectories Applications

4 Perspectives

Outlook

In systems biology

- Need for global networks, but lack of precise knowledge
- $\bullet \Rightarrow$ Boolean networks are more and more popular
- Success stories start to come out

Computational methods allow to address larger and larger networks; quite soon at genome scale...

Outlook

In systems biology

- Need for global networks, but lack of precise knowledge
- $\bullet \Rightarrow$ Boolean networks are more and more popular
- Success stories start to come out

Computational methods allow to address larger and larger networks; quite soon at genome scale...

BUT

Outlook

In systems biology

- Need for global networks, but lack of precise knowledge
- $\bullet \Rightarrow$ Boolean networks are more and more popular
- Success stories start to come out

Computational methods allow to address larger and larger networks; quite soon at genome scale...

BUT

Major remaining challenge: deal with huge number of candidate models

- network inference lead to many networks, equivalent w.r.t. available data
- most methods take as input a single model...
- how to make convincing predictions? (model counting...)

Formal methods for capturing dynamics of biological networks

Acknowledgements

LSV/Inria Saclay, ENS Cachan

- Stefan Haar
- Thomas Chatain
- Stefan Schwoon
- Hugues Mandon
- Juraj Kolčák

Institut Curie

- Laurence Calzone
- Andrei Zinovyev

Univ. Luxembourg

- Thomas Sauter
- Lasse Sinkonnen
- Julia Becker
- Jun Pang

LCSB, Luxembourg

- Antonio del Sol
- Andras Hartmann
- Andrzej Mizera
- Sacha Zickenrott

Masaryk University

• David Šafránek

IRISA, Rennes Dyliss

• Anne Siegel

LS2N, Nantes MeForBio

- Olivier Roux
- Morgan Magnin
- Maxime Folschette
- Louis Fippo Fitime

Funding

