Loïc Paulevé

CNRS/LRI, Univ. Paris-Sud, Univ. Paris-Saclay - Biolnfo team loic.pauleve@lri.fr http://loicpauleve.name

CIRM - 4 January 2017

Transient Reachability

Initial state(s)/Goal state(s)

Transient Reachability

Initial state(s)/Goal state(s)

• Trajectory existence

Transient Reachability

Initial state(s)/Goal state(s)

• Trajectory existence

Transient Reachability

Initial state(s)/Goal state(s)

- Trajectory existence
- Reasoning on all trajectories

Outline

1 Automata Networks

2 Approximations of transient dynamics

Abstraction of traces Reachability: cut sets, bifurcations Model reduction preserving transient properties Software Pint

3 Starting project: cell reprogramming

Outline

1 Automata Networks

2 Approximations of transient dynamics

Abstraction of traces Reachability: cut sets, bifurcations Model reduction preserving transient properties Software Pint

3 Starting project: cell reprogramming

Automata Networks

Automata Networks

Asynchronous semantics (one transition at a time):

 $\langle a_0, b_0, c_0 \rangle$

Automata Networks

$$\begin{array}{c} \langle a_2, b_0, c_0 \rangle \\ \nearrow \\ \langle a_0, b_0, c_0 \rangle \\ \searrow \\ \langle a_1, b_0, c_0 \rangle \end{array}$$

Automata Networks

$$\begin{array}{c} \langle a_2, b_0, c_0 \rangle \longrightarrow \langle a_2, b_0, c_1 \rangle \\ \nearrow \\ \langle a_0, b_0, c_0 \rangle \\ \searrow \\ \langle a_1, b_0, c_0 \rangle \end{array}$$

Automata Networks

$$\begin{array}{c} \langle a_2, b_0, c_0 \rangle \longrightarrow \langle a_2, b_0, c_1 \rangle \longrightarrow \langle a_2, b_1, c_1 \rangle \\ \nearrow \\ \langle a_0, b_0, c_0 \rangle \\ \searrow \\ \langle a_1, b_0, c_0 \rangle \end{array}$$

Automata Networks

$$\begin{array}{c} \langle a_2, b_0, c_0 \rangle \longrightarrow \langle a_2, b_0, c_1 \rangle \longrightarrow \langle a_2, b_1, c_1 \rangle \longrightarrow \langle a_1, b_1, c_1 \rangle \\ \nearrow \\ \langle a_0, b_0, c_0 \rangle \\ \searrow \\ \langle a_1, b_0, c_0 \rangle \longrightarrow \cdots \end{array}$$

- 1. $f^a(x) = x[b] \wedge x[c]$ transitions:
- $a_0 \rightarrow a_1: b_1 \wedge c_1$ $a_1 \rightarrow a_0: b_0 \lor c_0$

- 1. $f^a(x) = x[b] \wedge x[c]$ transitions:
- $a_0 \rightarrow a_1$: $b_1 \wedge c_1$ $a_1 \rightarrow a_0$: $b_0 \lor c_0$

- 1. $f^a(x) = x[b] \wedge x[c]$ transitions:
- $a_0 \rightarrow a_1$: $b_1 \wedge c_1$ $a_1 \rightarrow a_0$: $b_0 \lor c_0$

- 1. $f^a(x) = x[b] \wedge x[c]$ transitions:
- $a_0 \rightarrow a_1$: $b_1 \wedge c_1$ $a_1 \rightarrow a_0$: $b_0 \lor c_0$

- 1. $f^a(x) = x[b] \wedge x[c]$ transitions:
- $a_0 \rightarrow a_1$: $b_1 \wedge c_1$ $a_1 \rightarrow a_0$: $b_0 \vee c_0$
- 2. Non-deterministic *f*^a transitions:
- $a_0 \rightarrow a_1: \ b_1 \lor c_1$ $a_1 \rightarrow a_0: \ b_0 \lor c_0$

Transition-centered specification

 $a_0 \rightarrow a_1: b_1 \wedge c_1$ $a_1 \rightarrow a_0: b_0 \vee c_0$

2. Non-deterministic *f*^a transitions:

 $a_0 \rightarrow a_1$: $b_1 \lor c_1$ $a_1 \rightarrow a_0$: $b_0 \lor c_0$

Transition-centered specification

- transitions: $f(x) = x[b] \land x[c]$
- $a_0 \rightarrow a_1$: $b_1 \wedge c_1$ $a_1 \rightarrow a_0$: $b_0 \vee c_0$

2. Non-deterministic *f*^a transitions:

 $a_0 \rightarrow a_1: \ b_1 \lor c_1$ $a_1 \rightarrow a_0: \ b_0 \lor c_0$

Transition-centered specification

- 1. $f^a(x) = x[b] \wedge x[c]$ transitions:
- $a_0 \rightarrow a_1$: $b_1 \wedge c_1$ $a_1 \rightarrow a_0$: $b_0 \vee c_0$

2. Non-deterministic *f*^a transitions:

 $a_0 \rightarrow a_1$: $b_1 \lor c_1$ $a_1 \rightarrow a_0$: $b_0 \lor c_0$

Transition-centered specification

- transitions: $f(x) = x[b] \land x[c]$
- $a_0 \rightarrow a_1$: $b_1 \wedge c_1$ $a_1 \rightarrow a_0$: $b_0 \vee c_0$

2. Non-deterministic *f*^a transitions:

 $a_0 \rightarrow a_1: \ b_1 \lor c_1$ $a_1 \rightarrow a_0: \ b_0 \lor c_0$

Outline

1 Automata Networks

2 Approximations of transient dynamics

Abstraction of traces Reachability: cut sets, bifurcations Model reduction preserving transient properties Software Pint

3 Starting project: cell reprogramming

Transient Reachability

Initial state(s)/Goal state(s)

Transient Reachability

Initial state(s)/Goal state(s)

• Trajectory existence

Transient Reachability

Initial state(s)/Goal state(s)

• Trajectory existence

Transient Reachability

Initial state(s)/Goal state(s)

- Trajectory existence
- Reasoning on all trajectories

State Transition Graph

\Rightarrow avoid building it! (even symbolically): abstractions $(\mbox{reachability is PSPACE-complete})$

Summary

Abstractions for transient dynamics of Automata Networks

Intuition: exploit the low scope of transitions

- Static analysis by abstract interpretation [Cousot and Cousot 77]
- Intermediate representation (Local Causality Graph) to reason on necessary/sufficient conditions for transitions
- Implementation mixes algorithms on graphs and SAT (ASP).

Basically:

Approx. of PSPACE problems with $P.e^{|a|-1}$ or $NP.e^{|a|-1}$ problems where |a| is the number of local states within a single automaton (typically 2-4)

Local Causality

Objective: pair of local states of a same automaton E.g., $c_0 \rightsquigarrow c_2$, $c_0 \rightsquigarrow c_0$, $d_0 \rightsquigarrow d_1$, ...

Local path: set of acyclic seq of local transitions

$$\mathsf{local-paths}(c_0 \rightsquigarrow c_2) = \{c_0 \xrightarrow{a_1} c_1 \xrightarrow{a_1, b_0} c_2, \\ c_0 \xrightarrow{d_1} c_2\}$$

nb local paths: poly(nb local trs),exp(nb levels)

Local Causality

Objective: pair of local states of a same automaton E.g., $c_0 \rightsquigarrow c_2$, $c_0 \rightsquigarrow c_0$, $d_0 \rightsquigarrow d_1$, ...

Local path: set of acyclic seq of local transitions

$$\mathsf{local-paths}(c_0 \rightsquigarrow c_2) = \{c_0 \xrightarrow{a_1} c_1 \xrightarrow{a_1, b_0} c_2, \\ c_0 \xrightarrow{d_1} c_2\}$$

nb local paths: poly(nb local trs),exp(nb levels)

For any trace π starting at some global state s with $c_0 \in s$ and reaching c_2 :

- either $c_0 \xrightarrow{a_1} c_1 \xrightarrow{a_1, b_0} c_2$ or $c_0 \xrightarrow{d_1} c_2$ is a sub-trace of π ;
- either a_1 and b_0 , or d_1 are reached before c_2 in π .

Local Causality Graph

Local Causality Graph

Local Causality Graph

Local Causality Graph

Local Causality Graph

Local Causality Graph

Local Causality Graph

Local Causality Graph

Local Causality Graph

Local Causality Graph

• Initial context $\varsigma = \{a \mapsto \{0, 1\}; b \mapsto \{0\}; c \mapsto \{0\}; d \mapsto \{0\}\}.$

Approximations of reachability UA $(s \rightarrow^* c_2) \Rightarrow s \rightarrow^* c_2 \Rightarrow OA(s \rightarrow^* c_2)$

Cut sets for (transient) reachability

Global state graph

Cut sets for (transient) reachability Experiments

Under-approximation of N-cut sets (cardinality at most N) Alternative implementations:

- Computation on Local Causality Graph
- Set of local states *ls* such that $OA(s \rightarrow^* g)$ is wrong in $\mathcal{A} \setminus ls$ (NP formulation)

```
$ pint-reach --cutsets 4 --no-init-cutsets -i TCell-d.an BCL6=1
"GP130"=1
"STAT3"=1
"CD28"=1,"IL6R"=1
...
"IL6RA"=1."TCR"=1
```

	TCell-d (101)	RBE2F (370)	MAPK-Schoeberl (309)	PID (21,000)
4-cut sets	0.03s (27)	0.06s (57)	0.1s (34)	39s (37)
6-cut sets	0.03s (27)	0.76s (334)	0.5s (43)	2.6h (1257)

[Paulevé et al at CAV 2013]

Cut sets for (transient) reachability Experiments

Under-approximation of N-cut sets (cardinality at most N) Alternative implementations:

- Computation on Local Causality Graph
- Set of local states *ls* such that $OA(s \rightarrow^* g)$ is wrong in $\mathcal{A} \setminus ls$ (NP formulation)

```
$ pint-reach --cutsets 4 --no-init-cutsets -i TCell-d.an BCL6=1
"GP130"=1
"STAT3"=1
"CD28"=1,"IL6R"=1
...
"IL6RA"=1,"TCR"=1
```

	TCell-d (101)	RBE2F (370)	MAPK-Schoeberl (309)	PID (21,000)
4-cut sets	0.03s (27)	0.06s (57)	0.1s (34)	39s (37)
6-cut sets	0.03s (27)	0.76s (334)	0.5s (43)	2.6h (1257)

[Paulevé et al at CAV 2013]

Bifurcation transitions for reachability

Identify when and how a system loses a capability

Global state graph

Bifurcation transitions for reachability

Under-approximation with NP formulation: find transition t, s_b such that

$$\mathsf{UA}(s_0 \to^* s_b) \land \mathsf{UA}(s_b \to^* g) \land \neg \mathsf{OA}(s_b \cdot t \to^* g)$$

ASP (SAT) implementation Joint work with L. F. Fitime, C. Guziolowski, O. Roux [WCB'16; journal submitted]

Bifurcations for reachability Experiments

```
$ pint-reach --bifurcations -i th_pluri.an FOXP3=1
"STAT6" 0 -> 1 when "IL4R"=1
"RORGT" 0 -> 1 when "BCL6"=0 and "FOXP3"=0 and "STAT3"=1 and "TGFBR"=1
"STAT1" 0 -> 1 when "IL27R"=1
"STAT1" 0 -> 1 when "IFNGR"=1
```

Automata Network	states	Goal	MC (NuSMV)		Pint	
Automata Network	518105		$ t_b $	Time	$ t_b $	Time
Lambda phage	14	CI ₂	10	0.1 <i>s</i>	0	0.2 <i>s</i>
$ \Sigma = 4$ $ T = 11$	14	Cro_2	3	0.1 <i>s</i>	2	0.3 <i>s</i>
Th_th1	$\sim 2 10^{11}$	BCL6 ₁	8	13 <i>s</i>	5	23 <i>s</i>
$ \Sigma = 101^{-} T = 381$	≈ 5.10	$TBET_1$	11	14 <i>s</i>	4	24 <i>s</i>
	> 5.10 ¹⁴	BCL6 ₁	out-of-time		2	32 <i>s</i>
Th_pluri		$IL21_1$			0	26 <i>s</i>
$ \Sigma = 101^{-1} T = 381^{-1}$		FOXP3 ₁			4	56 <i>s</i>
		$TGFB_1$			5	96 <i>s</i>

Goal-oriented Reduction

[Paulevé at CMSB'16]

Goal-oriented Reduction

[Paulevé at CMSB'16]

Goal-oriented Reduction

[Paulevé at CMSB'16]

 \Rightarrow identify useless transitions in Automata Network definition (no transition graph computation!)

Loïc Paulevé

Goal-oriented reduction

Goal-oriented reduction

Goal-oriented reduction

Theorem

Goal-oriented reduction preserves all simple traces from initial state to goal.

Refining local paths

Given an initial state s, ignore local paths requiring impossible objectives:

$$\begin{array}{l} \mathsf{filtered-local-paths}_s(a_i \leadsto a_j) \stackrel{\Delta}{=} \{ \eta \in \mathsf{local-paths}(a_i \leadsto a_j) \mid \forall n \in \mathbb{I}^{\eta}, \\ \forall b_k \in \mathsf{enab}(\eta^n), \mathsf{OA}(s \rightarrow^* b_k) \} \end{array}$$

$$\mathsf{local-paths}(c_0 \rightsquigarrow c_2) = \{c_0 \xrightarrow{a_1} c_1 \xrightarrow{b_0} c_2, c_0 \xrightarrow{d_1} c_2\}$$

If $\neg OA(s \rightarrow^* d_1)$, then filtered-local-paths_s($c_0 \rightsquigarrow c_2$) = { $c_0 \xrightarrow{a_1} c_1 \xrightarrow{b_0} c_2$ }

Reduction procedure

Smallest set of objectives \mathcal{B} satisfying:

•
$$g_0 \rightsquigarrow g_\top \in \mathcal{B} \text{ (main objective)}$$

• $b_j \stackrel{\ell}{\to} b_k \in \operatorname{tr}(\mathcal{B}) \Rightarrow \forall a_i \in \ell, a_0 \rightsquigarrow a_i \in \mathcal{B}$
• $b_j \stackrel{\ell}{\to} b_k \in \operatorname{tr}(\mathcal{B}) \land b_* \rightsquigarrow b_i \in \mathcal{B} \Rightarrow b_k \rightsquigarrow b_i \in \mathcal{B}$
with $\operatorname{tr}(\mathcal{B}) \stackrel{\Delta}{=} \bigcup_{P \in \mathcal{B}} \operatorname{tr}(\operatorname{filtered-local-paths}_{\mathcal{S}}(P))$

Reduction procedure

Smallest set of objectives \mathcal{B} satisfying:

•
$$g_0 \rightsquigarrow g_\top \in \mathcal{B} \text{ (main objective)}$$

• $b_j \stackrel{\ell}{\to} b_k \in \operatorname{tr}(\mathcal{B}) \Rightarrow \forall a_i \in \ell, a_0 \rightsquigarrow a_i \in \mathcal{B}$
• $b_j \stackrel{\ell}{\to} b_k \in \operatorname{tr}(\mathcal{B}) \land b_* \rightsquigarrow b_i \in \mathcal{B} \Rightarrow b_k \rightsquigarrow b_i \in \mathcal{B}$
with $\operatorname{tr}(\mathcal{B}) \stackrel{\Delta}{=} \bigcup_{P \in \mathcal{B}} \operatorname{tr}(\operatorname{filtered-local-paths}_s(P))$

Reduction procedure

Smallest set of objectives \mathcal{B} satisfying:

•
$$g_0 \rightsquigarrow g_\top \in \mathcal{B} \text{ (main objective)}$$

• $b_j \stackrel{\ell}{\to} b_k \in \operatorname{tr}(\mathcal{B}) \Rightarrow \forall a_i \in \ell, a_0 \rightsquigarrow a_i \in \mathcal{B}$
• $b_j \stackrel{\ell}{\to} b_k \in \operatorname{tr}(\mathcal{B}) \land b_* \rightsquigarrow b_i \in \mathcal{B} \Rightarrow b_k \rightsquigarrow b_i \in \mathcal{B}$
with $\operatorname{tr}(\mathcal{B}) \stackrel{\Delta}{=} \bigcup_{P \in \mathcal{B}} \operatorname{tr}(\operatorname{filtered-local-paths}_s(P))$

Reduction procedure

Smallest set of objectives \mathcal{B} satisfying:

•
$$g_0 \rightsquigarrow g_\top \in \mathcal{B} \text{ (main objective)}$$

• $b_j \stackrel{\ell}{\to} b_k \in \operatorname{tr}(\mathcal{B}) \Rightarrow \forall a_i \in \ell, a_0 \rightsquigarrow a_i \in \mathcal{B}$
• $b_j \stackrel{\ell}{\to} b_k \in \operatorname{tr}(\mathcal{B}) \land b_* \rightsquigarrow b_i \in \mathcal{B} \Rightarrow b_k \rightsquigarrow b_i \in \mathcal{B}$
with $\operatorname{tr}(\mathcal{B}) \stackrel{\Delta}{=} \bigcup_{P \in \mathcal{B}} \operatorname{tr}(\operatorname{filtered-local-paths}_s(P))$

Reduction procedure

Smallest set of objectives \mathcal{B} satisfying:

•
$$g_0 \rightsquigarrow g_\top \in \mathcal{B} \text{ (main objective)}$$

• $b_j \stackrel{\ell}{\to} b_k \in \operatorname{tr}(\mathcal{B}) \Rightarrow \forall a_i \in \ell, a_0 \rightsquigarrow a_i \in \mathcal{B}$
• $b_j \stackrel{\ell}{\to} b_k \in \operatorname{tr}(\mathcal{B}) \land b_* \rightsquigarrow b_i \in \mathcal{B} \Rightarrow b_k \rightsquigarrow b_i \in \mathcal{B}$
with $\operatorname{tr}(\mathcal{B}) \stackrel{\Delta}{=} \bigcup_{P \in \mathcal{B}} \operatorname{tr}(\operatorname{filtered-local-paths}_s(P))$

Reduction procedure

Smallest set of objectives \mathcal{B} satisfying:

•
$$g_0 \rightsquigarrow g_\top \in \mathcal{B} \text{ (main objective)}$$

• $b_j \stackrel{\ell}{\to} b_k \in \operatorname{tr}(\mathcal{B}) \Rightarrow \forall a_i \in \ell, a_0 \rightsquigarrow a_i \in \mathcal{B}$
• $b_j \stackrel{\ell}{\to} b_k \in \operatorname{tr}(\mathcal{B}) \land b_* \rightsquigarrow b_i \in \mathcal{B} \Rightarrow b_k \rightsquigarrow b_i \in \mathcal{B}$
with $\operatorname{tr}(\mathcal{B}) \stackrel{\Delta}{=} \bigcup_{P \in \mathcal{B}} \operatorname{tr}(\operatorname{filtered-local-paths}_s(P))$

Reduction procedure

Smallest set of objectives \mathcal{B} satisfying:

•
$$g_0 \rightsquigarrow g_\top \in \mathcal{B} \text{ (main objective)}$$

• $b_j \stackrel{\ell}{\to} b_k \in \operatorname{tr}(\mathcal{B}) \Rightarrow \forall a_i \in \ell, a_0 \rightsquigarrow a_i \in \mathcal{B}$
• $b_j \stackrel{\ell}{\to} b_k \in \operatorname{tr}(\mathcal{B}) \land b_* \rightsquigarrow b_i \in \mathcal{B} \Rightarrow b_k \rightsquigarrow b_i \in \mathcal{B}$
with $\operatorname{tr}(\mathcal{B}) \stackrel{\Delta}{=} \bigcup_{P \in \mathcal{B}} \operatorname{tr}(\operatorname{filtered-local-paths}_s(P))$

Experiments

For each model: select an initial state; select a goal (activation of a node).

Goal reachability verification - equivalent in reduced model

```
$ pint-export -i model.an --reduce-for-goal g=1 -o reduced.an
$ pint-nusmv -i reduced.an g=1
```

	Verification of goal reachability					
Model	# local trs	# states	NuSMV (EF g)		its-reach	
	332	KO	ко		1s	50Mb
VFC (00)	219	$1.8\cdot10^9$	236s	156Mb	0.8s	21Mb
TCell-d (101)	384	$pprox 2.7 \cdot 10^8$	3s	40Mb	0.5s	24Mb
profile 1	0	1				
TCell-d (101)	384	KO	КО		0.5s	23Mb
profile 2	161	75,947,684	474s	260Mb	0.3s	19Mb
EGE r (104)	378	$pprox 2.7 \cdot 10^{16}$	КО		1.36s	60Mb
	69	62,914,560	11s	33Mb	0.3s	17Mb
	742	KO	КО		KO	
100221 (370)	56	2,350,494	5s	377Mb	5s	170Mb

In all cases, reduction step took less than 0.1s

Experiments

Verification of cut sets (checkpoints)

- requires all the simple traces
- $\{a_1, b_1\}$ is a cut set for g_1 iff not E [$(a \neq 1 \land b \neq 1)$ U g = 1]
- equivalent in the reduced model

```
$ pint-export -i model.an --reduce-for-goal g=1 -o reduced.an
```

\$ pint-nusmv -i reduced.an --is-cutset a=1,b=1 g=1

	Wnt (32)	TCell-r (40)	EGF-r (104)	TCell-d (101)	RBE2F (370)
NuSMV	44s 55Mb	KO	KO	KO	KO
	9.1s 27Mb	2.4s 34Mb	13s 33Mb	600s 360Mb	6s 29Mb
its-ctl	105s 2.1Gb	492s 10Gb	KO	KO	KO
	16s 720Mb	11s 319Mb	21s 875Mb	КО	179s 1.8Gb

In all cases, reduction step took less than 0.1s

Goal-oriented reduction

- Automata networks with asynchronous or general step semantics
- Goal: sub-state reachability; sequences of sub-state reachability
- Removes local transitions identified as useless for the goal
- Low complexity: poly(automata, local trs); exp(nb levels)

Properties of the reduced model

- Preserves all simple traces for goal reachability from initial state
 - \Rightarrow existence of a trace to the goal is preserved
 - \Rightarrow properties shared by all the traces to the goal are preserved
- Experiments show drastic improvement for model-checking of biological nets

On-going work

- Embed in Petri net unfolding; model identification
- Fast updating after one transition

Software: Pint

http://loicpauleve.name/pint

- Input: automata networks
 - convert SBML-qual/GINsim with LogicalModels
 - scripts for CellNetAnalyser, Biocham, etc.
- Command line tools:
 - · Static analysis for reachability, cut sets, fixed points
 - Model reduction w.r.t. reachability property
 - Inference of Interaction graph/Thomas parameters
 - Interface with model-checkers (NuSMV, ITS, mole).
- OCaml library (possible C/C++ bindings)

model.an:
a [0, 1]
b [0, 1, 2]
c [0, 1]

a 0 -> 1 when b=0 and c=1 a 1 -> 0 when b=1 a 1 -> 0 when b=2 a 1 -> 0 when c=0 b 0 -> 1 when a=1 b 1 -> 2 when a=1

Coming soon: Pint notebook

CJUPYTET demo_ErbB2 Last Checkpoint: 30 minutes ago (autosaved)	6
File Edit View Insert Cell Kernel Help	Python 3 C
E + M 2 K + H ■ C Code + E CeliToolbar	
In [1]: import pint	
You are using Pint version 2016-09-16	
<pre>In [2]: erbb = pint.load("http://ginsim.org/sites/default/files/ErbB2_model.zginml")</pre>	
Downloading 'http://ginsim.org/sites/default/files/ErbB2_model.zginml' to 'gen/pintodunp3mvErbB2_model.zginml' Source file is in zginml format, importing with logicalmodel Invoking GNsim Simplifying model	
gen/pinteeuqb4mzErbB2_model.an	
1 state(s) have been registered: Init_WT	
<pre>In [3]: erbb.having(EGF=1).cutsets("pRB1=1")</pre>	
# Running command pint-reachjson-stdoutcutsets 5 pRB1=1no-init-cutsets -i gen/pinteeuqb4mzErbB2_model. initial-context "EGF"=1	an
Out[3]: [('CDK4': 1), {'CDK4': 1}, {'ERalpha': 1}, {'MRC': 1}, {'MRC': 1}, {'MRC': 1}, {'RRB1': 1, 'KRB2': 1, 'IGF1R': 1}, {'ERB81': 1, 'ERB23': 1, 'IGF1R': 1}, {'ERB81': 1, 'ERB83': 1, 'IGF1R': 1}]	
In []:	

Transient Dynamics of Automata Networks; Towards Cell Reprogramming: Starting project: cell reprogramming

Outline

1 Automata Networks

2 Approximations of transient dynamics

Abstraction of traces Reachability: cut sets, bifurcations Model reduction preserving transient properties Software Pint

3 Starting project: cell reprogramming

Transient Dynamics of Automata Networks; Towards Cell Reprogramming: Starting project: cell reprogramming

Cellular Reprogramming

Cell identity cascading landscape

(source: Crespo et al. Stem cells 2013; 31:2127-2135)

Transient Dynamics of Automata Networks; Towards Cell Reprogramming: Starting project: cell reprogramming

Reprogramming Determinants Prediction

Reprogramming Determinants (RDs): set of nodes and perturbations

2 settings

- Permanent perturbations (mutations): function is changed to constant
- Temporary perturbations: enforced transitions

2 problems

• Existential reprogramming after perturbation the target attractor is reachable.

Inevitable reprogramming

after perturbation the target attractor is the only reachable attractor
Reprogramming Determinants Prediction

Preliminary results

Relationship between the Reprogramming Determinants of Boolean Networks and their Interaction Graph Hugues Mandon, Stefan Haar, Loïc Paulevé at HSB 2016.

For permanent perturbations:

- existential reprog: RDs are all in (particular) SCCs of the IG;
- inevitable reprog: RDs can be outside the cycles;
- in all cases, reachability checking is key.

Algorithms for RDs characterization combines Interaction Graph analysis and model-checking.

ANR-FNR AlgoReCell 2017-2019

Computational Models and Algorithms for the Prediction of Cell Reprogrammig Determinants with High Efficiency and High Fidelity

AlgoReCell Objectives

- Design a **generic computational framework** for predicting perturbations leading to a cellular de-differentiation or trans-differentiation.
- The **predictions** will consist of combinations of targets (notably genes), referred to **Reprogramming Determinants (RDs)**.
- The predictions will be **based on a computational dynamical model** of the cell regulation network, and on the initial and targeted cell type.
- The resulting framework will be **evaluated experimentally** for the reprogramming of adipocyte and osteoblast cells.

ANR-FNR AlgoReCell 2017-2019

France

LRI

• Loïc Paulevé (leader)

LSV

- Stefan Haar
- Thomas Chatain
- Stefan Schwoon
- Hugues Mandon (PhD student LSV-LRI)
- Juraj Kolcak (future PhD student LSV-LRI)

Institut Curie

- Andrei Zinovyev
- Laurence Calzone
- + postdoc

Luxembourg

FSTC Life

- Thomas Sauter (leader)
- Lasse Sinkkonen
- + PhD student

FSTC Computer Science

- Jun Pang
- Andrzej Mizera
- + postdoc

LCSB Centre for Systems Biomedicine

Antonio del Sol

Perspectives

Next direction: Temporal Reprogramming

One-shot reprogramming can require more perturbations than temporal reprogramming

Example:

Reprogramming from 0000 to 1101 (fixpoints) One-shot reprogramming requires 3 mutations. Temporal reprogramming requires 2 mutations: $\begin{array}{c} 0000 \longrightarrow 1000 \longrightarrow 1010 \longrightarrow 1110 \longrightarrow 1100 \\ \downarrow \qquad \qquad \downarrow \\ 1011 \longrightarrow 1111 \longrightarrow 1101 \end{array}$

PhD thesis work of Hugues Mandon (co-supervised with Stefan Haar). Preliminary results in writting...