Goal-Oriented Reduction of Automata Networks

Loïc Paulevé

CNRS/LRI, Univ. Paris-Sud, Paris-Saclay, France loic.pauleve@lri.fr http://loicpauleve.name

CMSB 2016 - Cambridge, UK

Goal-Oriented Reduction of Automata Networks: Introduction

Transient Reachability

Initial state(s)/Goal state(s)

Transient Reachability

Initial state(s)/Goal state(s)

• Trajectory existence

Transient Reachability

Initial state(s)/Goal state(s)

• Trajectory existence

Transient Reachability

Initial state(s)/Goal state(s)

- Trajectory existence
- Reasoning on all trajectories

Reachability in models of biological networks

Validation

• Ability to reproduce time-series data

Prediction

- Cell response w.r.t. signal+environment
- Long-term behaviours (differentiation)

Control

 Mutations/Perturbations for modifying cell behaviour, Trans/De-differentiation

Reachability in logical networks

Logical models of biological networks

- Boolean networks
- Multi-valued/Thomas networks
- Automata networks

Pros

- Few parameters: applicable for large-scale networks
- Finite state space; small compared to population models
- Coarse-grained but exhaustive view of dynamics

Reachability in logical networks

Logical models of biological networks

- Boolean networks
- Multi-valued/Thomas networks
- Automata networks

Pros

- Few parameters: applicable for large-scale networks
- Finite state space; small compared to population models
- Coarse-grained but exhaustive view of dynamics

Bad news: verifying reachability is PSPACE-complete

Model reduction

Aim compute a new model, hopefully more tractable

- remove dimensions (variables)
- remove transitions (restrict trajectories)

Challenge: which properties are preserved in the reduced model?

Model reduction

Aim compute a new model, hopefully more tractable

- remove dimensions (variables)
- remove transitions (restrict trajectories)

Challenge: which properties are preserved in the reduced model?

Excerpt of state of the art for logical networks:

- Reduction of logical regulatory graphs [Naldi et al at CMSB'09] (dimension reduction)
 - \Rightarrow breaks reachability properties

Model reduction

Aim compute a new model, hopefully more tractable

- remove dimensions (variables)
- remove transitions (restrict trajectories)

Challenge: which properties are preserved in the reduced model?

Excerpt of state of the art for logical networks:

- Reduction of logical regulatory graphs [Naldi et al at CMSB'09] (dimension reduction)
 - \Rightarrow breaks reachability properties
- Cone of influence reduction [Biere et al at CAV'99]; Relevant subnet computation [Talcott and Dill in TCSB 2006] (remove variables/transitions having no impact on a given property) ⇒ preserve LTL properties

Contribution

Goal-oriented reduction

- Goal: state of component (e.g., c = 2); sub-state (a = 1, c = 2); + sequence
- Preserves all minimal trajectories to the goal from a given initial state minimality: no sub-sequence of transitions (no loop, no non-contributing transitions).
- Low complexity: poly(automata, local transitions), exp(levels)

Automata networks

- Transition-centered specification (à la Petri net); (in opposition to function-centered Boolean/Thomas networks [Talk of Fages of yesterday])
- any Boolean/Thomas networks can be encoded;
- encoding of SBGN Process Description models [Rougny et al. BMC Systems Biology 2016] (includes reaction networks, e.g., Biocham models).

Automata Networks

a c 2 2 · b₀, a₁ 1... c_0 b_1 1 · b_0 b_0 0 · 1 . 0 . a_2, c_1 a_0 0

Automata Networks

Asynchronous semantics (one transition at a time):

 $\langle a_0, b_0, c_0 \rangle$

a c 2 · 2 · b₀, a₁ 1 .. c_0 b_1 1 · b_0 b_0 0 1 . 0 . a_2, c_1 an 0

Automata Networks

$$\begin{array}{c} \langle a_2, b_0, c_0 \rangle \\ \nearrow \\ \langle a_0, b_0, c_0 \rangle \\ \searrow \\ \langle a_0, b_0, c_1 \rangle \end{array}$$

a c 2 · 2 · b₀, a₁ 1 .. c_0 1 · b_1 b_0 b_0 0 1 . 0 . a_2, c_1 an 0

Automata Networks

$$\begin{array}{c} \langle a_2, b_0, c_0 \rangle \longrightarrow \langle a_2, b_0, c_1 \rangle \\ \nearrow \\ \langle a_0, b_0, c_0 \rangle \\ \searrow \\ \langle a_0, b_0, c_1 \rangle \end{array}$$

a c 2 2 · b₀, a₁ 1 .. c_0 1 · b_1 b_0 b_0 0 1 . 0 . a_2, c_1 an 0

Automata Networks

$$\begin{array}{c} \langle a_2, b_0, c_0 \rangle \longrightarrow \langle a_2, b_0, c_1 \rangle \longrightarrow \langle a_2, b_1, c_1 \rangle \\ \nearrow \\ \langle a_0, b_0, c_0 \rangle \\ \searrow \\ \langle a_0, b_0, c_1 \rangle \end{array}$$

a c 2 2 · b₀, a₁ 1 .. c_0 1 · b_1 b_0 b_0 0 1 . 0 . a_2, c_1 an 0

Automata Networks

$$\begin{array}{c} \langle a_2, b_0, c_0 \rangle \longrightarrow \langle a_2, b_0, c_1 \rangle \longrightarrow \langle a_2, b_1, c_1 \rangle \longrightarrow \langle a_1, b_1, c_1 \rangle \\ \nearrow \\ \langle a_0, b_0, c_0 \rangle \\ \searrow \\ \langle a_0, b_0, c_1 \rangle \longrightarrow \cdots \end{array}$$

State transition graph

State transition graph

State transition graph

Trace: sequence of local transitions A trace $\pi \vDash P$ is minimal w.r.t. *P* iff there is no sub-sequence $\pi' \subsetneq \pi$ s.t. $\pi' \vDash P$.

Examples with $P = \text{reach } a_1$:

$$b_0 \xrightarrow{c_0} b_1$$
, $c_0 \xrightarrow{b_1} c_1$, $b_1 \xrightarrow{c_1} b_2$, $b_2 \xrightarrow{a_0} b_1$, $a_0 \xrightarrow{b_1, c_1} a_1$

$$b_0 \xrightarrow{c_0} b_1$$
, $c_0 \xrightarrow{b_1} c_1$, $d_0 \xrightarrow{c_1} d_1$, $a_0 \xrightarrow{b_1, c_1} a_1$

$$b_0 \xrightarrow{c_0} b_1, c_0 \xrightarrow{b_1} c_1, a_0 \xrightarrow{b_1, c_1} a_1$$

Trace: sequence of local transitions A trace $\pi \vDash P$ is minimal w.r.t. *P* iff there is no sub-sequence $\pi' \subsetneq \pi$ s.t. $\pi' \vDash P$.

Examples with $P = \text{reach } a_1$:

$$b_0 \xrightarrow{c_0} b_1, c_0 \xrightarrow{b_1} c_1, \mathbf{b_1} \xrightarrow{\mathbf{c_1}} \mathbf{b_2}, \mathbf{b_2} \xrightarrow{\mathbf{a_0}} \mathbf{b_1}, a_0 \xrightarrow{b_1, c_1} a_1$$

non-minimal

$$b_0 \xrightarrow{c_0} b_1$$
, $c_0 \xrightarrow{b_1} c_1$, $d_0 \xrightarrow{c_1} d_1$, $a_0 \xrightarrow{b_1, c_1} a_1$

$$b_0 \xrightarrow{c_0} b_1, c_0 \xrightarrow{b_1} c_1, a_0 \xrightarrow{b_1, c_1} a_1$$

Trace: sequence of local transitions A trace $\pi \vDash P$ is minimal w.r.t. *P* iff there is no sub-sequence $\pi' \subsetneq \pi$ s.t. $\pi' \vDash P$.

Examples with $P = \text{reach } a_1$:

$$b_0 \xrightarrow{c_0} b_1, c_0 \xrightarrow{b_1} c_1, \mathbf{b_1} \xrightarrow{\mathbf{c_1}} \mathbf{b_2}, \mathbf{b_2} \xrightarrow{\mathbf{a_0}} \mathbf{b_1}, a_0 \xrightarrow{b_1, c_1} a_1$$

non-minimal

$$b_0 \xrightarrow{c_0} b_1$$
, $c_0 \xrightarrow{b_1} c_1$, $\mathbf{d_0} \xrightarrow{\mathbf{c_1}} \mathbf{d_1}$, $a_0 \xrightarrow{b_1, c_1} a_1$

non-minimal

$$b_0 \xrightarrow{c_0} b_1$$
, $c_0 \xrightarrow{b_1} c_1$, $a_0 \xrightarrow{b_1, c_1} a_1$

Trace: sequence of local transitions A trace $\pi \vDash P$ is minimal w.r.t. *P* iff there is no sub-sequence $\pi' \subsetneq \pi$ s.t. $\pi' \vDash P$.

Examples with $P = \text{reach } a_1$:

$$b_0 \xrightarrow{c_0} b_1, c_0 \xrightarrow{b_1} c_1, \mathbf{b_1} \xrightarrow{\mathbf{c_1}} \mathbf{b_2}, \mathbf{b_2} \xrightarrow{\mathbf{a_0}} \mathbf{b_1}, a_0 \xrightarrow{b_1, c_1} a_1$$

non-minimal

$$b_0 \xrightarrow{c_0} b_1$$
, $c_0 \xrightarrow{b_1} c_1$, $\mathbf{d_0} \xrightarrow{\mathbf{c_1}} \mathbf{d_1}$, $a_0 \xrightarrow{b_1, c_1} a_1$

non-minimal

$$b_0 \xrightarrow{c_0} b_1, c_0 \xrightarrow{b_1} c_1, a_0 \xrightarrow{b_1, c_1} a_1$$

minimal

Goal-oriented reduction

Goal-oriented reduction

Goal-oriented reduction

Theorem

Goal-oriented reduction preserves all minimal traces from initial states to goal.

Local Causality

Objective: pair of local states of a same automaton E.g., $c_0 \rightsquigarrow c_2$, $c_0 \rightsquigarrow c_0$, $d_0 \rightsquigarrow d_1$, ...

Local path: set of acyclic seq of local transitions

local-paths
$$(c_0 \rightsquigarrow c_2) = \{c_0 \xrightarrow{a_1} c_1 \xrightarrow{b_0} c_2, c_0 \xrightarrow{d_1} c_2\}$$

nb local paths: poly(nb local trs),exp(nb levels)

Local Causality

Objective: pair of local states of a same automaton E.g., $c_0 \rightsquigarrow c_2$, $c_0 \rightsquigarrow c_0$, $d_0 \rightsquigarrow d_1$, ...

Local path: set of acyclic seq of local transitions

local-paths $(c_0 \rightsquigarrow c_2) = \{c_0 \xrightarrow{a_1} c_1 \xrightarrow{b_0} c_2, c_0 \xrightarrow{d_1} c_2\}$

nb local paths: poly(nb local trs),exp(nb levels)

For any trace π starting at some global state s with $c_0 \in s$ and reaching c_2 :

- either $c_0 \xrightarrow{a_1} c_1 \xrightarrow{b_0} c_2$ or $c_0 \xrightarrow{d_1} c_2$ is a sub-trace of π ;
- either a_1 and b_0 , or d_1 are reached before c_2 in π .

Helper: Necessary condition for reachability

Let us assume a predicate **valid**_s $(a_i \rightsquigarrow a_i)$ such that:

 \neg **valid**_s $(a_i \rightsquigarrow a_j) \Longrightarrow \nexists$ trace π from *s* reaching a_i then a_j

Helper: Necessary condition for reachability

Let us assume a predicate **valid**_s $(a_i \rightsquigarrow a_j)$ such that:

 \neg **valid**_s $(a_i \rightsquigarrow a_j) \Longrightarrow \nexists$ trace π from s reaching a_i then a_j

Example of implementation

For this talk:

$$\mathsf{valid}_s(a_i \rightsquigarrow a_j) \stackrel{\Delta}{\Leftrightarrow} \mathsf{local-paths}(a_i \rightsquigarrow a_j) \neq \emptyset$$

For finer impl. see paper, and even finer see [Paulevé et al. in MSCS 2012].

In particular: \neg **valid**_s $(d_0 \rightsquigarrow d_1)$.

Refining local paths

Given an initial state s, ignore local paths requiring non-valid objectives:

filtered-local-paths_s
$$(a_i \rightsquigarrow a_j) \stackrel{\Delta}{=} \{\eta \in \text{local-paths}(a_i \rightsquigarrow a_j) \mid \forall n \in \mathbb{I}^{\eta}, \forall b_k \in \text{enab}(\eta^n), \text{valid}_s(b_0 \rightsquigarrow b_k)\}$$

$$\mathsf{local-paths}(c_0 \rightsquigarrow c_2) = \{c_0 \xrightarrow{a_1} c_1 \xrightarrow{b_0} c_2, c_0 \xrightarrow{d_1} c_2\}$$

If $\neg \mathsf{valid}_s(d_0 \rightsquigarrow d_1)$, then filtered-local-paths_s $(c_0 \rightsquigarrow c_2) = \{c_0 \xrightarrow{a_1} c_1 \xrightarrow{b_0} c_2\}$

Smallest set of objectives \mathcal{B} satisfying:

•
$$g_0 \rightsquigarrow g_\top \in \mathcal{B} \text{ (main objective)}$$

• $b_j \stackrel{\ell}{\to} b_k \in \operatorname{tr}(\mathcal{B}) \Rightarrow \forall a_i \in \ell, a_0 \rightsquigarrow a_i \in \mathcal{B}$
• $b_j \stackrel{\ell}{\to} b_k \in \operatorname{tr}(\mathcal{B}) \land b_* \rightsquigarrow b_i \in \mathcal{B} \Rightarrow b_k \rightsquigarrow b_i \in \mathcal{B}$
with $\operatorname{tr}(\mathcal{B}) \stackrel{\Delta}{=} \bigcup_{P \in \mathcal{B}} \operatorname{tr}(\operatorname{filtered-local-paths}_s(P))$

Smallest set of objectives \mathcal{B} satisfying:

•
$$g_0 \rightsquigarrow g_\top \in \mathcal{B} \text{ (main objective)}$$

• $b_j \stackrel{\ell}{\to} b_k \in \operatorname{tr}(\mathcal{B}) \Rightarrow \forall a_i \in \ell, a_0 \rightsquigarrow a_i \in \mathcal{B}$
• $b_j \stackrel{\ell}{\to} b_k \in \operatorname{tr}(\mathcal{B}) \land b_\star \rightsquigarrow b_i \in \mathcal{B} \Rightarrow b_k \rightsquigarrow b_i \in \mathcal{B}$
with $\operatorname{tr}(\mathcal{B}) \stackrel{\Delta}{=} \bigcup_{P \in \mathcal{B}} \operatorname{tr}(\operatorname{filtered-local-paths}_s(P))$

Smallest set of objectives \mathcal{B} satisfying:

•
$$g_0 \rightsquigarrow g_\top \in \mathcal{B} \text{ (main objective)}$$

• $b_j \stackrel{\ell}{\to} b_k \in \operatorname{tr}(\mathcal{B}) \Rightarrow \forall a_i \in \ell, a_0 \rightsquigarrow a_i \in \mathcal{B}$
• $b_j \stackrel{\ell}{\to} b_k \in \operatorname{tr}(\mathcal{B}) \land b_\star \rightsquigarrow b_i \in \mathcal{B} \Rightarrow b_k \rightsquigarrow b_i \in \mathcal{B}$
with $\operatorname{tr}(\mathcal{B}) \stackrel{\Delta}{=} \bigcup_{P \in \mathcal{B}} \operatorname{tr}(\operatorname{filtered-local-paths}_s(P))$

Smallest set of objectives \mathcal{B} satisfying:

•
$$g_0 \rightsquigarrow g_\top \in \mathcal{B} \text{ (main objective)}$$

• $b_j \stackrel{\ell}{\to} b_k \in \operatorname{tr}(\mathcal{B}) \Rightarrow \forall a_i \in \ell, a_0 \rightsquigarrow a_i \in \mathcal{B}$
• $b_j \stackrel{\ell}{\to} b_k \in \operatorname{tr}(\mathcal{B}) \land b_\star \rightsquigarrow b_i \in \mathcal{B} \Rightarrow b_k \rightsquigarrow b_i \in \mathcal{B}$
with $\operatorname{tr}(\mathcal{B}) \stackrel{\Delta}{=} \bigcup_{P \in \mathcal{B}} \operatorname{tr}(\operatorname{filtered-local-paths}_s(P))$

Smallest set of objectives \mathcal{B} satisfying:

•
$$g_0 \rightsquigarrow g_\top \in \mathcal{B} \text{ (main objective)}$$

• $b_j \stackrel{\ell}{\to} b_k \in \operatorname{tr}(\mathcal{B}) \Rightarrow \forall a_i \in \ell, a_0 \rightsquigarrow a_i \in \mathcal{B}$
• $b_j \stackrel{\ell}{\to} b_k \in \operatorname{tr}(\mathcal{B}) \land b_\star \rightsquigarrow b_i \in \mathcal{B} \Rightarrow b_k \rightsquigarrow b_i \in \mathcal{B}$
with $\operatorname{tr}(\mathcal{B}) \stackrel{\Delta}{=} \bigcup_{P \in \mathcal{B}} \operatorname{tr}(\operatorname{filtered-local-paths}_s(P))$

Smallest set of objectives \mathcal{B} satisfying:

•
$$g_0 \rightsquigarrow g_\top \in \mathcal{B} \text{ (main objective)}$$

• $b_j \stackrel{\ell}{\to} b_k \in \operatorname{tr}(\mathcal{B}) \Rightarrow \forall a_i \in \ell, a_0 \rightsquigarrow a_i \in \mathcal{B}$
• $b_j \stackrel{\ell}{\to} b_k \in \operatorname{tr}(\mathcal{B}) \land b_\star \rightsquigarrow b_i \in \mathcal{B} \Rightarrow b_k \rightsquigarrow b_i \in \mathcal{B}$
with $\operatorname{tr}(\mathcal{B}) \stackrel{\Delta}{=} \bigcup_{P \in \mathcal{B}} \operatorname{tr}(\operatorname{filtered-local-paths}_s(P))$

Smallest set of objectives \mathcal{B} satisfying:

•
$$g_0 \rightsquigarrow g_\top \in \mathcal{B} \text{ (main objective)}$$

• $b_j \stackrel{\ell}{\to} b_k \in \operatorname{tr}(\mathcal{B}) \Rightarrow \forall a_i \in \ell, a_0 \rightsquigarrow a_i \in \mathcal{B}$
• $b_j \stackrel{\ell}{\to} b_k \in \operatorname{tr}(\mathcal{B}) \land b_\star \rightsquigarrow b_i \in \mathcal{B} \Rightarrow b_k \rightsquigarrow b_i \in \mathcal{B}$
with $\operatorname{tr}(\mathcal{B}) \stackrel{\Delta}{=} \bigcup_{P \in \mathcal{B}} \operatorname{tr}(\operatorname{filtered-local-paths}_s(P))$

For each model: select an initial state; select a goal (activation of a node).

Goal reachability verification - equivalent in reduced model

\$ pint-export -i model.an --reduce-for-goal g=1 -o reduced.an \$ pint-nusmv -i reduced.an g=1

			Verifi	cation of	goal read	chability
Model	# local trs	# states	NuSMV (EF g)		its-reach	
VPC (00)	332	KO	ко		1s	50Mb
VI C (00)	219	$1.8\cdot10^9$	236s	156Mb	0.8s	21Mb
TCell-d (101)	384	$pprox 2.7 \cdot 10^8$	3s 40Mb		0.5s	24Mb
profile 1	0	1				
TCell-d (101)	384	KO	ко		0.5s	23Mb
profile 2	161	75,947,684	474s	260Mb	0.3s	19Mb
EGF-r (104)	378	$\approx 2.7\cdot 10^{16}$	КО		1.36s	60Mb
	69	62,914,560	11s	33Mb	0.3s	17Mb
RBE2F (370)	742	KO	КО		KO	
	56	2,350,494	5s	377Mb	5s	170Mb

In all cases, reduction step took less than 0.1s

For each model: select an initial state; select a goal (activation of a node).

Goal reachability verification - equivalent in reduced model

\$ pint-export -i model.an --reduce-for-goal g=1 -o reduced.an \$ pint-nusmv -i reduced.an g=1

For each model: select an initial state; select a goal (activation of a node).

Goal reachability verification - equivalent in reduced model

\$ pint-export -i model.an --reduce-for-goal g=1 -o reduced.an \$ pint-nusmv -i reduced.an g=1

			Verifi	cation of	goal read	chability
Model	# local trs	# states	NuSMV (EF g)		its-reach	
VPC (00)	332	KO	ко		1s	50Mb
VI C (00)	219	$1.8\cdot10^9$	236s	156Mb	0.8s	21Mb
TCell-d (101)	384	$pprox 2.7 \cdot 10^8$	3s 40Mb		0.5s	24Mb
profile 1	0	1				
TCell-d (101)	384	KO	ко		0.5s	23Mb
profile 2	161	75,947,684	474s	260Mb	0.3s	19Mb
EGF-r (104)	378	$\approx 2.7\cdot 10^{16}$	КО		1.36s	60Mb
	69	62,914,560	11s	33Mb	0.3s	17Mb
RBE2F (370)	742	KO	КО		KO	
	56	2,350,494	5s	377Mb	5s	170Mb

In all cases, reduction step took less than 0.1s

Verification of cut sets (checkpoints)

- requires all the minimal traces
- $\{a_1, b_1\}$ is a cut set for g_1 iff not E [$(a \neq 1 \land b \neq 1)$ U g = 1]
- equivalent in the reduced model

```
$ pint-export -i model.an --reduce-for-goal g=1 -o reduced.an
```

\$ pint-nusmv -i reduced.an --is-cutset a=1,b=1 g=1

	Wnt (32)	TCell-r (40)	EGF-r (104)	TCell-d (101)	RBE2F (370)
NuSMV	44s 55Mb	KO	KO	KO	KO
	9.1s 27Mb	2.4s 34Mb	13s 33Mb	600s 360Mb	6s 29Mb
its-ctl	105s 2.1Gb	492s 10Gb	KO	KO	KO
	16s 720Mb	11s 319Mb	21s 875Mb	КО	179s 1.8Gb

In all cases, reduction step took less than 0.1s

Conclusion

Goal-oriented reduction of automata networks

- Automata networks with asynchronous or general step semantics
- Goal: sub-state reachability; sequences of sub-state reachability
- Removes local transitions identified as useless for the goal
- Low complexity: poly(automata, local trs); exp(nb levels)

Properties of the reduced model

- Preserves all minimal traces for goal reachability from initial state
 - \Rightarrow existence of a trace to the goal is preserved
 - \Rightarrow properties shared by all the traces to the goal are preserved
- Experiments show drastic improvement for model-checking of biological nets

Implemented in Pint - http://loicpauleve.name/pint

On-going work

- Embed in Petri net unfolding; model identification
- Fast updating after one transition