Abstractions for Dynamics of Automata Networks (brief overview)

Loïc Paulevé

CNRS/LRI, Université Paris-Sud, Orsay, France — BioInfo team loic.pauleve@lri.fr http://loicpauleve.name

November 23, 2015 - Journée nationale du groupe de travail BIOSS, Paris

Overview

Over-approximation of reachability Under-approximation of reachability Under-approximation of cut sets

Goal-oriented model reduction

1. $f^a(x) = x[b] \land x[c]$ transitions:

$$a_0 \rightarrow a_1$$
: $b_1 \wedge c_1$
 $a_1 \rightarrow a_0$: $b_0 \vee c_0$

Loïc Paulevé

1. $f^a(x) = x[b] \land x[c]$ transitions:

$$a_0 \rightarrow a_1$$
: $b_1 \wedge c_1$
 $a_1 \rightarrow a_0$: $b_0 \vee c_0$

Loïc Paulevé 3/8

1. $f^a(x) = x[b] \land x[c]$ transitions:

$$a_0 \rightarrow a_1$$
: $b_1 \wedge c_1$
 $a_1 \rightarrow a_0$: $b_0 \vee c_0$

Loïc Paulevé 3/8

1. $f^a(x) = x[b] \land x[c]$ transitions:

$$a_0 \rightarrow a_1$$
: $b_1 \wedge c_1$
 $a_1 \rightarrow a_0$: $b_0 \vee c_0$

Loïc Paulevé

1.
$$f^a(x) = x[b] \land x[c]$$
 transitions:

$$a_0 \rightarrow a_1$$
: $b_1 \wedge c_1$
 $a_1 \rightarrow a_0$: $b_0 \vee c_0$

2. Non-deterministic f^a transitions:

$$a_0 \rightarrow a_1$$
: $b_1 \lor c_1$
 $a_1 \rightarrow a_0$: $b_0 \lor c_0$

Loïc Paulevé

1. $f^a(x) = x[b] \land x[c]$ transitions:

$$a_0 \rightarrow a_1$$
: $b_1 \wedge c_1$
 $a_1 \rightarrow a_0$: $b_0 \vee c_0$

2. Non-deterministic f^a transitions:

$$a_0 \rightarrow a_1$$
: $b_1 \lor c_1$
 $a_1 \rightarrow a_0$: $b_0 \lor c_0$

1.
$$f^a(x) = x[b] \land x[c]$$
 transitions:

$$a_0 \rightarrow a_1$$
: $b_1 \wedge c_1$
 $a_1 \rightarrow a_0$: $b_0 \vee c_0$

2. Non-deterministic f^a transitions:

$$a_0 \rightarrow a_1$$
: $b_1 \lor c_1$
 $a_1 \rightarrow a_0$: $b_0 \lor c_0$

1.
$$f^a(x) = x[b] \land x[c]$$
 transitions:

$$a_0 \rightarrow a_1$$
: $b_1 \wedge c_1$
 $a_1 \rightarrow a_0$: $b_0 \vee c_0$

2. Non-deterministic f^a transitions:

$$a_0 \rightarrow a_1$$
: $b_1 \lor c_1$
 $a_1 \rightarrow a_0$: $b_0 \lor c_0$

Loïc Paulevé 3/8

1.
$$f^a(x) = x[b] \land x[c]$$
 transitions:

$$a_0 \rightarrow a_1$$
: $b_1 \wedge c_1$
 $a_1 \rightarrow a_0$: $b_0 \vee c_0$

2. Non-deterministic f^a transitions:

$$a_0 \rightarrow a_1$$
: $b_1 \lor c_1$
 $a_1 \rightarrow a_0$: $b_0 \lor c_0$

Local Causality

local-cause(
$$a_0 \rightarrow^* a_2$$
) = $\{a_0 \xrightarrow{b_0} a_1 \xrightarrow{c_1} a_2, a_0 \xrightarrow{b_2} a_2\}$
local-cause[#]($a_0 \rightarrow^* a_2$) = $\{\{b_0, c_1\}, \{b_2\}\}$

Local Causality

local-cause(
$$a_0 \rightarrow^* a_2$$
) = $\{a_0 \xrightarrow{b_0} a_1 \xrightarrow{c_1} a_2,$
 $a_0 \xrightarrow{b_2} a_2\}$
local-cause[#]($a_0 \rightarrow^* a_2$) = $\{\{b_0, c_1\}, \{b_2\}\}$

For any trace π starting at some global state s with $a_0 \in s$ and reaching a_2 :

- either $a_0 \xrightarrow{b_0} a_1 \xrightarrow{c_1} a_2$ or $a_0 \xrightarrow{b_2} a_2$ is a sub-trace of π ;
- either b_1 and c_0 , or b_2 are reached before a_2 in π .

- Causality of a2.
- Initial context $\varsigma = \{a \mapsto \{0\}; b \mapsto \{0\}; c \mapsto \{0, 1\}; d \mapsto \{0\}\}.$

Loïc Paulevé 5/8

- Causality of a2.
- Initial context $\varsigma = \{a \mapsto \{0\}; b \mapsto \{0\}; c \mapsto \{0, 1\}; d \mapsto \{0\}\}.$

- Causality of a2.
- Initial context $\varsigma = \{a \mapsto \{0\}; b \mapsto \{0\}; c \mapsto \{0, 1\}; d \mapsto \{0\}\}.$

- Causality of a2.
- Initial context $\varsigma = \{a \mapsto \{0\}; b \mapsto \{0\}; c \mapsto \{0, 1\}; d \mapsto \{0\}\}.$

Loïc Paulevé 5/8

- Causality of a2.
- Initial context $\varsigma = \{a \mapsto \{0\}; b \mapsto \{0\}; c \mapsto \{0, 1\}; d \mapsto \{0\}\}.$

Necessary condition

The occurrence of a_2 from a_0 necessarily requires the prior occurrence of b_2 or of b_0 and c_1 .

Results using local causality analysis

Verification for transient reachability

- Necessary or sufficient conditions;
- Low complexity (polynomial with nb automata, exp with automaton size);

Cut-sets for transition reachability (towards control)

- Identify sets of mutations to break a transition reachability;
- Under-approximation of cut-sets
- Applied to models with 10,000 nodes.

Goal-oriented model reduction

- Given a reachability property (goal), identify "useless" transitions.
- Preserves all minimal traces for the goal reachability.
- Low complexity (polynomial with nb automata, exp with automaton size);
- ⇒ pre-processing before model-checking
- ⇒ benchmarks show effective model reduction

(research report: https://hal.archives-ouvertes.fr/hal-01149118)

Loïc Paulevé 6/8

Software: Pint

http://loicpauleve.name/pint

- Input: automata networks
 - implemented in LogicalModels (shipped with GINsim)
- Command line tools:
 - · Static analysis for reachability
 - "Cut sets" for reachability
 - Model reduction w.r.t. reachability property
 - Fixed points
 - Inference of Thomas parameters
 - Interface with model-checkers (NuSMV, ITS, mole).
- OCaml library (C/C++ bindings in progress)

(secret project: GUI)

Conclusion/Perspectives

Static analysis of automata network dynamics

- Local causality analysis, summarized in a compact graph
- Reasonning on necessary/sufficient conditions for transitions
- Multiple applications for transient reachability analysis
- Can address very large networks (several 1,000 nodes).

Goal-oriented model reduction

- Embed in model-checking approaches (Petri net unfoldings, etc.)
- Embed in **model identification** (static pruning of model space).

Cell reprogramming

- · Large models
- Boolean abstraction well suited (experimental validations)
- Causality analysis for deriving potential reprogramming determinants?

Thanks for your attention!

Loïc Paulevé 8/8