Characterization of Reachable Attractors using Petri Net Unfoldings

T. Chatain¹, S. Haar¹, L. Jezequel¹, L. Paulevé², S. Schwoon¹

¹LSV, ENS Cachan / CNRS / Inria ²LRI, Université Paris-Sud / CNRS / Inria

12th Conference on Computational Methods in Systems Biology 17-19 November, 2014 - University of Manchester, UK Characterization of Reachable Attractors using Petri Net Unfoldings: Introduction

Attractors in Discrete Dynamical Models

Models

- Regulatory networks, signalling pathways
- Bio-chemical networks, ...

Discrete Dynamics

Attractors

- The "long term" dynamics (limit cycles / fixed points)
- Differentiation processes / homeostasis.

Characterization of Reachable Attractors using Petri Net Unfoldings: Introduction

Challenge

Goal: Exhaustive list of attractors reachable from a given state (one state of each attractor)

Current approaches

- Explicit/symbolic computation of the state graph
- Problem is inherently hard: PSPACE-hard

Alternatives: approximations using simulations, heuristics w/ topology (non-exhaustive, no reachability constraint)

Characterization of Reachable Attractors using Petri Net Unfoldings: Introduction

Motivations

Exploit concurrency in networks

- Many components may evolve independently for a while
- $\bullet\,\Rightarrow$ generates multiple spurious interleavings in the state graph
- Many works in concurrency theory to tackle efficiently such dynamics (partial-order semantics)

Contribution

- New algorithm based on Petri net unfoldings
- Complete characterization of reachable attractors
- Applicable to any safe Petri net

Safe Petri Net

- Safe Petri net: at most one token per place
- Marking (state): set of places having one token
- Enabled transition: all (place) parents have one token
- Transition firing (one at a time): 1. empty tokens from parents, 2. add tokens to children

Safe Petri Net

- Safe Petri net: at most one token per place
- Marking (state): set of places having one token
- Enabled transition: all (place) parents have one token
- Transition firing (one at a time): 1. empty tokens from parents, 2. add tokens to children

Safe Petri Net

- Safe Petri net: at most one token per place
- Marking (state): set of places having one token
- Enabled transition: all (place) parents have one token
- Transition firing (one at a time): 1. empty tokens from parents, 2. add tokens to children

Safe Petri Net

- Safe Petri net: at most one token per place
- Marking (state): set of places having one token
- Enabled transition: all (place) parents have one token
- Transition firing (one at a time): 1. empty tokens from parents, 2. add tokens to children

Safe Petri Net

- Safe Petri net: at most one token per place
- Marking (state): set of places having one token
- Enabled transition: all (place) parents have one token
- Transition firing (one at a time): 1. empty tokens from parents, 2. add tokens to children

Safe Petri Net

- Safe Petri net: at most one token per place
- Marking (state): set of places having one token
- Enabled transition: all (place) parents have one token
- Transition firing (one at a time): 1. empty tokens from parents, 2. add tokens to children

Reachable Attractors in Safe Petri Net

Attractors = Bottom Strongly Connected Components in the marking graph (from initial marking)

Processes, Branching Processes and Unfoldings

Process: representation of a non-sequential run as a partial order.

Processes, Branching Processes and Unfoldings

Processes, Branching Processes and Unfoldings

non-sequential run as a partial order.

Processes, Branching Processes and Unfoldings

non-sequential run as a partial order.

Processes, Branching Processes and Unfoldings

Processes, Branching Processes and Unfoldings

Process: representation of a non-sequential run as a partial order.

Branching process: representation of several runs.

Unfolding: maximal branching process.

Complete Finite Prefix of Unfolding

• Unfolding is an infinite acyclic net

Complete Finite Prefix of Unfolding

• Unfolding is an infinite acyclic net

Complete Finite Prefix of Unfolding

• Unfolding is an infinite acyclic net

Complete Finite Prefix

- Prefix of the unfolding that contains all reachable markings
- When done with care:

 $size(prefix) \le size(marking_graph)$

• Available tools: Mole¹, Cunf², ...

c c d

1: http://www.lsv.ens-cachan.fr/~schwoon/tools/mole
2: https://code.google.com/p/cunf

Identify Attractors with Unfoldings

General idea given a safe Petri net with initial marking m_0

- **1** Compute complete finite prefix \mathcal{U}_0 .
- e Extract set of markings intersecting all attractors
- 3 Filter out doubles and false positives

Identify Attractors with Unfoldings

General idea given a safe Petri net with initial marking m_0

- **1** Compute complete finite prefix \mathcal{U}_0 .
- e Extract set of markings intersecting all attractors
- 3 Filter out doubles and false positives

From Complete Prefix to Maximal Configurations

Maximal Configuration:

Marking led by a **maximal process** in the complete finite prefix

- Can be encoded as SAT.
- All attractors have at least one marking as max. conf.

From Complete Prefix to Maximal Configurations

Maximal Configuration:

Marking led by a **maximal process** in the complete finite prefix

- Can be encoded as SAT.
- All attractors have at least one marking as max. conf.

From Complete Prefix to Maximal Configurations

Maximal Configuration:

Marking led by a **maximal process** in the complete finite prefix

- Can be encoded as SAT.
- All attractors have at least one marking as max. conf.

From Complete Prefix to Maximal Configurations

Maximal Configuration:

Marking led by a **maximal process** in the complete finite prefix

- Can be encoded as SAT.
- All attractors have at least one marking as max. conf.

From Complete Prefix to Maximal Configurations

From Maximal Configurations to Attractors

Input: safe Petri net with initial marking m_0

- **1** Compute complete finite prefix \mathcal{U}_0 .
- **2** Compute the maximal configurations $\mathcal{M} = \{m_1, \cdots, m_k\}$
- Sor *i* from 1 to *k*:
 - if any marking in *M* is reachable from *m_i* (e.g., using *U_i*): remove *m_i* from *M*.

 $\mathsf{Output}\ \mathcal{M}$

- Each attractor reachable from m_0 has one and only one marking in ${\cal M}$
- Each marking in \mathcal{M} belongs to an attractor reachable from m_0 .

From Maximal Configurations to Attractors

Input: safe Petri net with initial marking m_0

- **1** Compute complete finite prefix \mathcal{U}_0 .
- **2** Compute the maximal configurations $\mathcal{M} = \{m_1, \cdots, m_k\}$
- 3 For *i* from 1 to k:
 - if any marking in \mathcal{M} is reachable from m_i (e.g., using \mathcal{U}_i): remove m_i from \mathcal{M} .

 $\mathsf{Output}\ \mathcal{M}$

- Each attractor reachable from m_0 has one and only one marking in ${\cal M}$
- Each marking in \mathcal{M} belongs to an attractor reachable from m_0 .

From Maximal Configurations to Attractors

Input: safe Petri net with initial marking m_0

- **1** Compute complete finite prefix \mathcal{U}_0 .
- **2** Compute the maximal configurations $\mathcal{M} = \{m_1, \cdots, m_k\}$
- 3 For *i* from 1 to *k*:
 - if any marking in \mathcal{M} is reachable from m_i (e.g., using \mathcal{U}_i): remove m_i from \mathcal{M} .

 $\mathsf{Output}\ \mathcal{M}$

- Each attractor reachable from m_0 has one and only one marking in ${\cal M}$
- Each marking in \mathcal{M} belongs to an attractor reachable from m_0 .

From Maximal Configurations to Attractors

Input: safe Petri net with initial marking m_0

- **1** Compute complete finite prefix \mathcal{U}_0 .
- **2** Compute the maximal configurations $\mathcal{M} = \{m_1, \cdots, m_k\}$
- 3 For *i* from 1 to k:
 - if any marking in *M* is reachable from *m_i* (e.g., using *U_i*): remove *m_i* from *M*.

 $\mathsf{Output}\ \mathcal{M}$

- Each attractor reachable from m_0 has one and only one marking in ${\cal M}$
- Each marking in \mathcal{M} belongs to an attractor reachable from m_0 .

Small Example

1. Complete Finite Prefix

Marking graph

2. Max. config.: {2,3}, {4,5}, {4,6}

3. Attractors

3 💿

4 🛈

Safe Petri Net Encoding of Discrete Networks

Discrete Networks

- Set of variables with value in $\mathbb{D} = \{0, \dots, l\}$ (Boolean or multi-valued)
- For each variable *i*, $f^i : \mathbb{D}^n \to \mathbb{D}$ (typically depends on a few other variables)

Encoding of asynchronous dynamics using safe Petri net

- One place per variable value
- Transitions for value changes
- $f^{a}(x) = x[b] \land x[c]$ $a_{0} \rightarrow a_{1} \text{ when}$ $b_{1} \land c_{1}$ $a_{1} \rightarrow a_{0} \text{ when } b_{0}$ $a_{1} \rightarrow a_{0} \text{ when } c_{0}$ $b_{1} \bullet$

Safe Petri Net Encoding of Discrete Networks

Discrete Networks

- Set of variables with value in $\mathbb{D} = \{0, \dots, l\}$ (Boolean or multi-valued)
- For each variable *i*, $f^i : \mathbb{D}^n \to \mathbb{D}$ (typically depends on a few other variables)

Encoding of asynchronous dynamics using safe Petri net

- One place per variable value
- Transitions for value changes
- $f^a(x) = x[b] \wedge x[c]$
 - $a_0 \rightarrow a_1$ when $b_1 \wedge c_1$

• $a_1 \rightarrow a_0$ when c_0

Safe Petri Net Encoding of Discrete Networks

Discrete Networks

- Set of variables with value in $\mathbb{D} = \{0, \dots, l\}$ (Boolean or multi-valued)
- For each variable *i*, $f^i : \mathbb{D}^n \to \mathbb{D}$ (typically depends on a few other variables)

Encoding of asynchronous dynamics using safe Petri net

- One place per variable value
- Transitions for value changes

 $f^a(x) = x[b] \wedge x[c]$

- $a_0 \rightarrow a_1$ when $b_1 \wedge c_1$
- $a_1 \rightarrow a_0$ when b_0
- $a_1 \rightarrow a_0$ when c_0

Safe Petri Net Encoding of Discrete Networks

Discrete Networks

- Set of variables with value in $\mathbb{D} = \{0, \dots, l\}$ (Boolean or multi-valued)
- For each variable *i*, $f^i : \mathbb{D}^n \to \mathbb{D}$ (typically depends on a few other variables)

Encoding of asynchronous dynamics using safe Petri net

- One place per variable value
- Transitions for value changes

 $f^a(x) = x[b] \wedge x[c]$

- $a_0 \rightarrow a_1$ when $b_1 \wedge c_1$
- $a_1 \rightarrow a_0$ when b_0
- $a_1 \rightarrow a_0$ when c_0

Experiments

Preliminary implementation

Model	nodes	reachable	prefix	max. conf.	attractors	time
Lambda switch	4	46	45	15	2	<1s
Cell cycle	10	112	111	34	1	<1s
ERBB	20	2,963	1,113	302	2	5s
VPC C. elegans	88	152,320	973	1,240	1	15min

Remarks:

- In those examples, most of the time is spent in filtering max. conf.
- There may be many useless max. conf.
- Computing complete finite prefix may be not tractable.

Discussion

Goal: Exhaustive list of attractors reachable from a given state (one state of each attractor)

Proof of concept

- Relies on complete prefix of unfolding of Petri nets
- Exploits concurrency between transitions
- Generic algorithm for identifying all the reachable attractors

On-going work for scalability

- More constraints on candidate maximal configurations (embed co-reachability constraints \rightarrow QBF)
- Iterative approach using **partial prefixes** of unfoldings.

Further extensions

- Specialize to discrete/Boolean networks
- More efficient unfolding: symbolic, abstractions,

Characterization of Reachable Attractors using Petri Net Unfoldings

Thank you for your attention.

.