Refining Dynamics of Gene Regulatory Networks in a Stochastic π-Calculus Framework

Loïc Paulevé, Morgan Magnin, Olivier Roux

Moves team, IRCCyN, Nantes, France

Journée Réseaux, June 12, 2009

Context

Hybrid modelling of Gene Regulatory Networks (GRN).

- Formal languages approaches:
 - κ language [Danos],
 - stochastic π -Calculus [Priami].
- Formal verification approaches:
 - Time(d) and Stochastic Petri Nets [Heiner],
 - Biocham [Fages],
 - Timed Automata [Siebert, Bockmayr],
 - Linear Hybrid Automata [Ahmad,Roux].

Goal: temporal parameters synthesis for hybrid models of GRN.

Contrib: introduction of temporal and stochastic parameters within π -calculus models of GRN.

Outline

- Generalized dynamics for Gene Regulatory Networks.
- The Process Hitting framework.
- 3 Discrete (structural) refinements: cooperativity and stable states.
- Temporal and stochastic parameters: temporal determinism.

Gene regulatory networks

- Activations and inhibitions between genes.
- Gene have a set of logical levels of expression.
- Regulation effect beyond a threshold, reverse effect below [Thomas].

Gene regulatory networks

- Established in silico by Francois et al.
- Generalizing segmentation processes (*Drosophila*,etc.).
- We consider only boolean levels (presence 1 / absence 0) but all presented methods work with any number of levels.

GRN dynamics

- c at level 0 activates a,
- c at level 1 inhibits a.

Generalized dynamics

π -Calculus modelling

c at level 0 activates a.

- 3 processes: *c*₀, *a*₀ and *a*₁.
- Channel γ shared only by c_0 and a_0 .
- c_0 outputs on channel γ .
- a_0 inputs on channel γ .
- If both a₀ and c₀ are present, a₀ may reduce to a₁.

$$c_0 ::= !\gamma.c_0 + < other actions >$$

 $a_0 ::= ?\gamma.a_1 + < other actions >$

Generalized dynamics for the GRN

Refining: cooperativity

 a_0 increases only if f_1 and c_0 are present:

Refining: cooperativity

 a_0 increases only if f_1 and c_0 are present:

Refining: stable states

n-cliques <u>are</u> stable states.

Refining: stable states

n-cliques <u>are</u> stable states.

Refining: stable states

n-cliques <u>are</u> stable states.

GRN refinements

Stochastic parameters

Example: self-hitting process:

Use rate r of exponential distribution (average duration: $\frac{1}{r}$).

Simulation through **SPIM** [Phillips]:

Stochasticity absorption factor

"Duration follows one exponential random variable of rate *r*" becomes

"Duration follows the sum of sa exponential random variables of rate r.sa"

Aka Erlang distribution (particular Gamma) of shape *sa* and rate *r.sa*.

Temporal and stochastic parameters

Example: self-hitting process:

Use rate r + stochasticity absorption factor sa (average duration: $\frac{1}{r}$ unchanged).

Firing intervals

Towards parameters synthesis

Conclusion

Contrib

- Stochastic π -Calculus framework to model GRN dynamics.
- Introduction of the stochasticity absorption factor
 temporal features tuning.
- Structural pattern for stable state presence.
- No state space exploration.
- Model checking using PRISM.

Outlook

- More structural patterns (oscillations, reachability, etc.).
- Tools around Erlang distribution.
- Automate parameters synthesis.

Questions?

Thank you for your attention!

Bonus

Gene regulatory networks

René Thomas' parameters inference

- Full set of K is an essential input for many GRN analysis tools.
- K_{a,{f,c},{a}}: level toward which a will tend when f, c
 effectively activate it and a effectively inhibits it.

René Thomas' parameters inference

- Full set of K is an essential input for many GRN analysis tools.
- K_{a,{f,c},{a}}: level toward which a will tend when f, c effectively activate it and a effectively inhibits it.

René Thomas' parameters inference

- Full set of K is an essential input for many GRN analysis tools.
- K_{a,{f,c},{a}}: level toward which a will tend when f, c effectively activate it and a effectively inhibits it.

A Stochastic π -Calculus framework

$$h = c_0 \longrightarrow a_0 \equiv \begin{cases} C_0 ::= \cdots + !\gamma_h.C_0 \\ A_0 ::= \cdots + ?\gamma_h.A_1 \end{cases}$$

- Straightforward translation to the Stochastic π -Calculus.
- To each channel γ_h we attach a use rate r_h .
- Average duration of an action with use rate $r: \frac{1}{r}$.
- Natural introduction of stochastic parameters into the Process Hitting framework.
- Gillespie: reaction duration follows an exponential law.