Refining Dynamics of Gene Regulatory Networks in a Stochastic π-Calculus Framework Loïc Paulevé, Morgan Magnin, Olivier Roux Moves team, IRCCyN, Nantes, France Journée Réseaux, June 12, 2009 #### Context Hybrid modelling of Gene Regulatory Networks (GRN). - Formal languages approaches: - κ language [Danos], - stochastic π -Calculus [Priami]. - Formal verification approaches: - Time(d) and Stochastic Petri Nets [Heiner], - Biocham [Fages], - Timed Automata [Siebert, Bockmayr], - Linear Hybrid Automata [Ahmad,Roux]. Goal: temporal parameters synthesis for hybrid models of GRN. Contrib: introduction of temporal and stochastic parameters within π -calculus models of GRN. #### **Outline** - Generalized dynamics for Gene Regulatory Networks. - The Process Hitting framework. - 3 Discrete (structural) refinements: cooperativity and stable states. - Temporal and stochastic parameters: temporal determinism. ### Gene regulatory networks - Activations and inhibitions between genes. - Gene have a set of logical levels of expression. - Regulation effect beyond a threshold, reverse effect below [Thomas]. ### Gene regulatory networks - Established in silico by Francois et al. - Generalizing segmentation processes (*Drosophila*,etc.). - We consider only boolean levels (presence 1 / absence 0) but all presented methods work with any number of levels. ### **GRN** dynamics - c at level 0 activates a, - c at level 1 inhibits a. #### Generalized dynamics #### π -Calculus modelling #### c at level 0 activates a. - 3 processes: *c*₀, *a*₀ and *a*₁. - Channel γ shared only by c_0 and a_0 . - c_0 outputs on channel γ . - a_0 inputs on channel γ . - If both a₀ and c₀ are present, a₀ may reduce to a₁. $$c_0 ::= !\gamma.c_0 + < other actions >$$ $a_0 ::= ?\gamma.a_1 + < other actions >$ Generalized dynamics for the GRN ## Refining: cooperativity a_0 increases only if f_1 and c_0 are present: ## Refining: cooperativity a_0 increases only if f_1 and c_0 are present: ## Refining: stable states *n*-cliques <u>are</u> stable states. ## Refining: stable states *n*-cliques <u>are</u> stable states. ## Refining: stable states *n*-cliques <u>are</u> stable states. #### **GRN** refinements #### Stochastic parameters #### Example: self-hitting process: Use rate r of exponential distribution (average duration: $\frac{1}{r}$). #### Simulation through **SPIM** [Phillips]: ## Stochasticity absorption factor "Duration follows one exponential random variable of rate *r*" becomes "Duration follows the sum of sa exponential random variables of rate r.sa" Aka Erlang distribution (particular Gamma) of shape *sa* and rate *r.sa*. ### Temporal and stochastic parameters Example: self-hitting process: Use rate r + stochasticity absorption factor sa (average duration: $\frac{1}{r}$ unchanged). ### Firing intervals ### Towards parameters synthesis #### Conclusion #### Contrib - Stochastic π -Calculus framework to model GRN dynamics. - Introduction of the stochasticity absorption factor temporal features tuning. - Structural pattern for stable state presence. - No state space exploration. - Model checking using PRISM. #### Outlook - More structural patterns (oscillations, reachability, etc.). - Tools around Erlang distribution. - Automate parameters synthesis. ### Questions? Thank you for your attention! # Bonus ## Gene regulatory networks ## René Thomas' parameters inference - Full set of K is an essential input for many GRN analysis tools. - K_{a,{f,c},{a}}: level toward which a will tend when f, c effectively activate it and a effectively inhibits it. ## René Thomas' parameters inference - Full set of K is an essential input for many GRN analysis tools. - K_{a,{f,c},{a}}: level toward which a will tend when f, c effectively activate it and a effectively inhibits it. ## René Thomas' parameters inference - Full set of K is an essential input for many GRN analysis tools. - K_{a,{f,c},{a}}: level toward which a will tend when f, c effectively activate it and a effectively inhibits it. #### A Stochastic π -Calculus framework $$h = c_0 \longrightarrow a_0 \equiv \begin{cases} C_0 ::= \cdots + !\gamma_h.C_0 \\ A_0 ::= \cdots + ?\gamma_h.A_1 \end{cases}$$ - Straightforward translation to the Stochastic π -Calculus. - To each channel γ_h we attach a use rate r_h . - Average duration of an action with use rate $r: \frac{1}{r}$. - Natural introduction of stochastic parameters into the Process Hitting framework. - Gillespie: reaction duration follows an exponential law.