Reconciling qualitative and abstract
(and scalable) reasoning
with Boolean networks

Loic Paulevé'?, Thomas Chatain3, Stefan Haar?

T CNRS, LaBRI, Bordeaux, France
2 CNRS, LRI, Univ Paris-Sud, Univ Paris-Saclay, France
3 LSV, ENS Paris-Saclay, Inria Saclay, France

% R ¥ iledeFrance Cosme



Most permissive semantics of Boolean networks

Overview

Discrete Dynamical Systems
(Boolean Networks)

I Systems Biology
(Signalling/regulation networks)

Concurrency Theory
(Semantics)
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Introduction
Boolean Network (BN) f : B™

Configuration: € B"™
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Most permissive semantics of Boolean networks

Generalized Asynchronicity

synchronous ,"
update !

L Paulevé, T Chatain, S Haar



Most permissive semantics of Boolean networks

Generalized Asynchronicity

synchronous ,"
update !

L Paulevé, T Chatain, S Haar



Most permissive semantics of Boolean networks

Reachable configurations
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Most permissive semantics of Boolean networks

Reachable configurations
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Should we reach configurations
beyond generalized asynchronicity?
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Most permissive semantics of Boolean networks

Boolean networks for biological processes

Example with gene regulation
Influence graph
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Most permissive semantics of Boolean networks

Boolean networks for biological processes
Example with gene regulation
. Influence graph
protein 1

+
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gene 1 gene 2 Reachable configurations
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fl (x) - 3 . v .
Boolean A ! .. ¥ obs*\
network J2(#) =1 A3 +update mode = ! o |
A \\ ; { 'l,
fg(l‘) = ... \\

Validation w.r.t. observations (e.g. time series data)
= we expect measurements match with reachable configurations
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Most permissive semantics of Boolean networks

Gene expression is not Boolean
Qualitative modelling: Boolean vs multivalued networks

protein 1
[|1>< D
gene 1 gene 2

effect on gene 2 transcription

[protein 1]
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Gene expression is not Boolean
Qualitative modelling: Boolean vs multivalued networks
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Most permissive semantics of Boolean networks

Gene expression is not Boolean
Qualitative modelling: Boolean vs multivalued networks
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Most permissive semantics of Boolean networks

Gene expression is not Boolean
Qualitative modelling: Boolean vs multivalued networks

protein 1

C@& \ Boolean network
A
7N Fale) 2
Pe— y | y | A
fs(z) = a1
h—
gene 1 gene 2 gene 3
effect on gene 3 transcription Multivalued network

effect on gene 2 transcription A

fa(z) = (x1 > 1)
f3(x) & (21 > 2)

0

Remark: Multivalued models can require different thresholds for each target

1 I 2 [protein 1]
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Most permissive semantics of Boolean networks

Properties of Boolean networks for biology
Given a Boolean network f of dimension n

Reachability (seq. of transitions from conf. x to y)
= PSPACE-complete with update modes
Potential behaviours/capabilities of the cell

Fixpoints (f (z) = x)
= NP-complete for sync/async/gasync
Steady states/phenotypes

Attractors (smallest sets of conf. closed by transitions)
= PSPACE-complete with update modes
Steady states/phenotypes

L Paulevé, T Chatain, S Haar



Most permissive semantics of Boolean networks

Qualitative vs abstract modelling

Consistency

Influence graph ;
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Update modes
of Boolean networks:
a bug...



Most permissive semantics of Boolean networks

Motivating example
(embedded in many actual biological networks)

fi(z) & ! -
fa(x) &~y < >-\/3
f3(x) & —w1 Ay 2 / G(f)

Aok
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Most permissive semantics of Boolean networks

Motivating example
(embedded in many actual biological networks)

fi(e) &~y ! -
f2(g;) 2 T _< >-\/3
2

f3(z) & —21 Ay + G(f)

/\E

—

= all configurations reachable
with any update mode
(generalized) asynchronous mode
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Most permissive semantics of Boolean networks

Motivating example
(embedded in many actual biological networks)

fi(z) &~y > 2) ! -
fo(z) & =2y < >\/

3
fg(fl;‘) £ —x1 /\(IL‘Q > 1) 2 / G(f)

Compatible continuous/multilevel dynamics:

1 inhibits 2 and 3
1
2 inhibits 1
2 2 activates 3
3
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Most permissive semantics of Boolean networks

Motivating example
(embedded in many actual biological networks)

fi(z) & ~g > 2) ! -
fo(z) & —2y < >-\/3
fg(flf) £ —x1 /\(1‘2 > 1) 2 / G(f)

Compatible continuous/multilevel dynamics:

1 inhibits 2 and 3

2 inhibits 1
2 activates 3

time not predicted by
update modes in Boolean 12
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Most permissive semantics of Boolean networks

Practical implications

Update modes can miss admissible transitions

Model synthesis from observations
= Reject valid solutions (false negatives)
(wrongly concludes on reachability)

Prediction for reprogramming (control)
Find mutations such that
1.y (goal phenotype) is reachable from x
= False negatives
2.z (bad phenotype) is not reachable from x
= False positives

L Paulevé, T Chatain, S Haar 13



Most permissive semantics
of Boolean networks
enabling new behaviours



Most permissive semantics of Boolean networks

Most permissive semantics

* delay between firing and application of state change
= allow interleaving other state changes
« in "intermediate" states [ 7]

other components choose what they see

current state

e
[ [— N [ —~d— D

next state
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Most permissive semantics of Boolean networks

Most permissive semantics
Rules for state of component i:

di € B(a): fi(3) | 4
TN

Z A
d
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Most permissive semantics
Rules for state of component i:

/“\

Jz € B(x

4

B:ld—M,[] example: B(!)

Choose value of "changing" components
(act as choosing an activation threshold)
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Most permissive semantics
Rules for state of component i:

d—
/\.
4

B:ld—M,[] example: B(!)= E, !

Choose value of "changing" components
(act as choosing an activation threshold)

can fire anytime

Jz € B(x
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Most permissive semantics of Boolean networks

Most permissive semantics
Rules for state of component i:
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Most permissive semantics of Boolean networks

Application to motivating example

fi(z) & ! -
fa(x) &~y < >-\/3
f3(x) & —w1 Ay 2 / G(f)
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Most permissive semantics of Boolean networks

Application to motivating example
filz) &~z ! -
fQ(x) 2 T _< >-\/3
fa(x) & =1 A wy 2 / G(f)

= valid with respect to multivalued refinements
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Most permissive semantics of Boolean networks

Properties of the most permissive semantics

Correct abstraction of multilevel/quantitative systems:
* includes all the transitions of every update mode
* multilevel refinements only remove behaviours

* Reachability can be decided in quadratic nb of transitions
(PTIME with locally-monotonic networks, or encoded as BDDs/Petri nets/...;

NP-complete otherwise; instead of PSPACE-complete with update modes)
* Attractors are hypercubes (minimal trap spaces)

= finding attractors is NP-complete (instead of PSPACE-complete)
= fixpoints are the same as with update modes

L Paulevé, T Chatain, S Haar
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Most permissive semantics of Boolean networks

Refinements of Boolean Networks

A multivalued network
F . Mn — {Ta_wL}

is a refinement of a Boolean network f iff

Fillall ) =1 = ] (L)) =1
Fi(l L) =4 = 3l.taf: (@ [ ])=0

Most permissive semantics weakly simulates
any multivalued refinement with any update mode

(can be extended to ODEs)

L Paulevé, T Chatain, S Haar
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Most permissive semantics of Boolean networks

Reachability with the most permissive semantics

Cost of one transition in component i

3t € Be): [i(7) [ 4

4

S 2 N
ﬂ/ﬁeﬁ(m):ﬁﬁ(i)

NP (SAT) in general;
Linear with
- locally-monotonic networks (f; are monotone)

- when fis encoded as BDDs/Petri nets/...

L Paulevé, T Chatain, S Haar
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Most permissive semantics of Boolean networks

Reachability with the most permissive semantics
Deciding reachability requires quadratic nb of transitions

Main property:
y reachable from x & there exists a path of length =3n transitions

X y
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Reachability with the most permissive semantics
Deciding reachability requires quadratic nb of transitions

Main property:
y reachable from x & there exists a path of length =3n transitions

X y
————————— > —————————. > ————————— >
=n =n =N

® - only transitions to "in-between" states*
@ - orient towards final states
® - converge to final states

*: some components must not be updated!
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Reachability with the most permissive semantics

Deciding reachability requires quadratic nb of transitions

Main property:
y reachable from x & there exists a path of length =3n transitions

X y
————————— > ————————— > ————————— >
=n =n =N

@ - only transitions to "in-between" states*  \pip general
@ - orient towards final states PTIME w/
® - converge to final states locally-monotonic;

* BDDs; Petri nets..
: some components must not be updated!
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Most permissive semantics of Boolean networks

Attractors with the most permissive semantics
Attractor: smallest set of configurations closed by transitions

Attractors are hypercubes
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Most permissive semantics of Boolean networks

Attractors with the most permissive semantics
Attractor: smallest set of configurations closed by transitions

Attractors are hypercubes
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Attractors of most permissive semantics = minimal trap spaces
Existence of attractor within hypercube is NP-complete
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Most permissive semantics of Boolean networks

Is most permissive semantics restrictive?

_____
-
-

o, update s R Minimality of abstraction

'l + modes of BN \ \‘ . . .

" ,,—"‘\\); v to any "most permissive" transition,

LY ] . . . .y

" .': SN o thereis corresponding multilevel transition
S~ -—— ’ ! . . .

RN . S (work in progress w/ "most permissive" paths:

EIREN multilevel ’

SiIz-zzie non-minimal, but tricky counter-examples)

most permissive
semantics of BN

« fixpoints (stable states) are preserved (identical)
* trap spaces: known to be relevant for reasoning with attractors
[Klarner et al in Nat. Comp. 2015] [Naldi in Front. Phys. 2018]
= most permissive semantics seems still adequate to model
differentiation processes !
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Most permissive semantics of Boolean networks

Applications
Prototype python library + ASP (SAT) implementation
https://github.com/pauleve/mpbn

Boolean network synthesis from reachability properties
= becomes NP

= CaspoTS implements most permissive reachability (ASP)
https://github.com/bioasp/caspots

Computation of reachable attractors
= In the order of ms for networks tested so far (~100 nodes)

WiP with most permissive semantics:
* model synthesis from differentiation data [Stéphanie Chevalier]
* prediction for cellular reprogramming

L Paulevé, T Chatain, S Haar
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Most permissive semantics of Boolean networks
Conclusion
Update modes of Boolean networks (sync, async, etc.):
« difficult to justify (strong implications on dynamics)
* can miss important behaviours [CHP at AUTOMATA'18]
= |ead to reject valid models of biological systems...
* have limited tractability (model-checking, ...)

Most permissive semantics:

* correct abstraction: guarantees that adding information
(multilevel, thresholds) will only remove behaviours

* simpler complexity: reachability PTIME, attractors NP

= much higher tractability

Future work: most permissive for multilevel networks
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