Reconciling qualitative and abstract (and scalable) reasoning with Boolean networks

Loïc Paulevé^{1,2}, Thomas Chatain³, Stefan Haar³

¹ CNRS, LaBRI, Bordeaux, France

² CNRS, LRI, Univ Paris-Sud, Univ Paris-Saclay, France

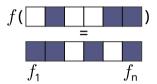
³ LSV, ENS Paris-Saclay, Inria Saclay, France

Most permissive semantics of Boolean networks **Overview**

Discrete Dynamical Systems (Boolean Networks)

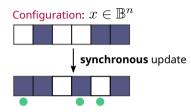
Systems Biology (Signalling/regulation networks)

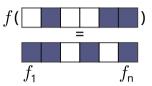

Concurrency Theory (Semantics)

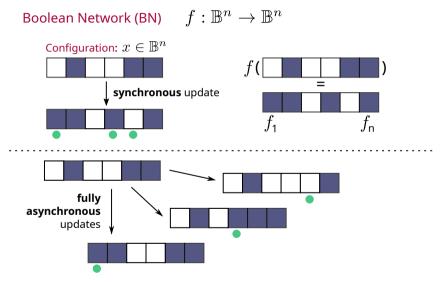

L Paulevé, T Chatain, S Haar

Most permissive semantics of Boolean networks Introduction

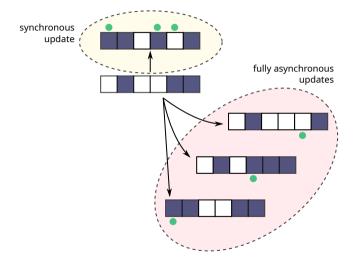
Boolean Network (BN) $f:\mathbb{B}^n
ightarrow\mathbb{B}^n$

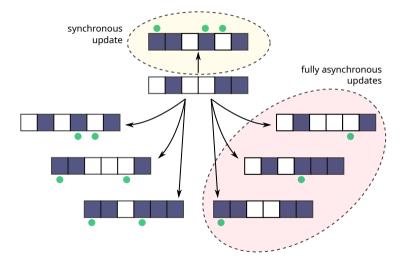

Configuration: $x \in \mathbb{B}^n$

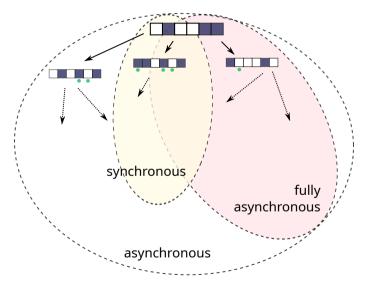


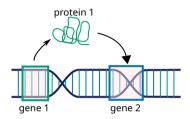

Most permissive semantics of Boolean networks Introduction

Boolean Network (BN) $f:\mathbb{B}^n
ightarrow\mathbb{B}^n$

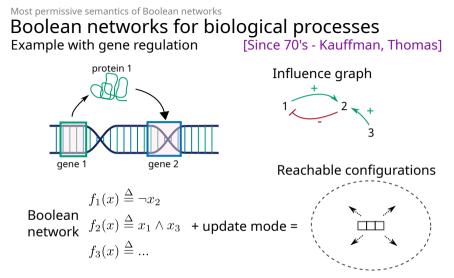


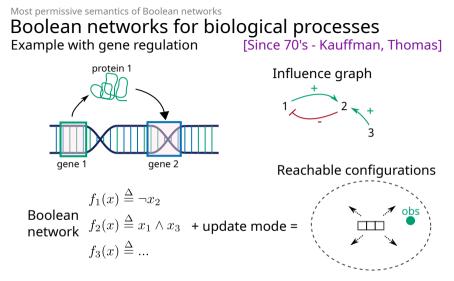

Most permissive semantics of Boolean networks Introduction


Most permissive semantics of Boolean networks Asynchronous updates


Most permissive semantics of Boolean networks Asynchronous updates

Most permissive semantics of Boolean networks Reachable configurations



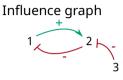

Most permissive semantics of Boolean networks Boolean networks for biological processes Example with gene regulation [Since 70's - Kauffman, Thomas]

Influence graph

Validation w.r.t. observations (e.g. time series data) ⇒ we expect measurements match with reachable configurations

Properties of Boolean networks for biology

Given a Boolean network f of dimension n


Reachability (seq. of transitions from conf. x to y) ⇒ PSPACE-complete with update modes Potential behaviours/capabilities of the cell

Fixpoints (f(x) = x)

⇒ NP-complete for sync/async/gasyncSteady states/phenotypes

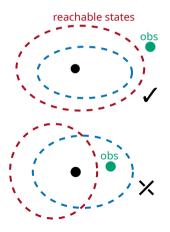
Attractors (smallest sets of conf. closed by transitions) ⇒ PSPACE-complete with update modes Steady states/phenotypes

Most permissive semantics of Boolean networks Qualitative vs abstract modelling

Boolean network

- logic of activity w.r.t. regulators
- update mode (sync, async, etc.)

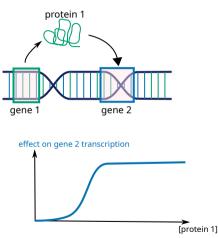
Multilevel network


+ define activation thresholds

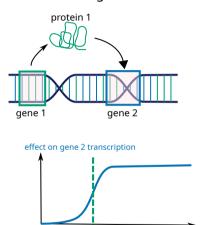
Quantitative model

nformation

Consistency


analysis at Boolean level transposable to multilevel?

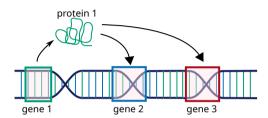
Most permissive semantics of Boolean networks


Gene expression is not Boolean

Qualitative modelling: Boolean vs multivalued networks

Most permissive semantics of Boolean networks Gene expression is not Boolean Qualitative modelling: Boolean vs multivalued networks

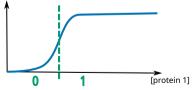
[protein 1]


Boolean network

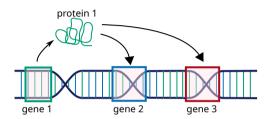
$$f_2(x) \stackrel{\Delta}{=} x_1$$

L Paulevé, T Chatain, S Haar

0


Most permissive semantics of Boolean networks **Gene expression is not Boolean** Qualitative modelling: Boolean vs multivalued networks

Boolean network


$$f_2(x) \stackrel{\Delta}{=} x_1$$
$$f_3(x) \stackrel{\Delta}{=} x_1$$

L Paulevé, T Chatain, S Haar


Most permissive semantics of Boolean networks **Gene expression is not Boolean** Qualitative modelling: Boolean vs multivalued networks

Boolean network

$$f_2(x) \stackrel{\Delta}{=} x_1$$
$$f_3(x) \stackrel{\Delta}{=} x_1$$

effect on gene 3 transcription effect on gene 2 transcription

Multivalued network

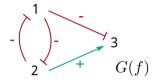
$$F_2(x) \stackrel{\Delta}{=} (x_1 \ge 1)$$
$$F_3(x) \stackrel{\Delta}{=} (x_1 \ge 2)$$

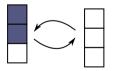
Most permissive semantics of Boolean networks Multivalued Networks

$$F: \mathbb{M}^n \to \{-1, 0, 1\}^n \qquad \qquad \mathbb{M} \stackrel{\Delta}{=} \{0, 1, ..., m\}$$

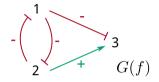
Asynchronous semantics

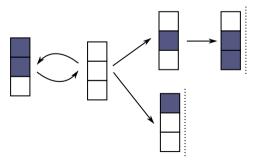
$$\begin{array}{c} x \in \mathbb{M}^n \xrightarrow{F} y \in \mathbb{M}^n \\ \xleftarrow{\Delta} \\ \forall i \in \Delta(x, y), y_i = x_i + F_i(x) \end{array}$$

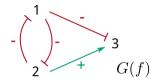

To ease notations,

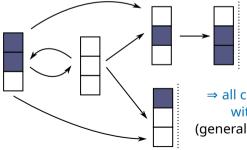

$$F_i(x) \stackrel{\Delta}{=} 1$$
 if $P(x)$ else $-1 \equiv F_i(x) \stackrel{\Delta}{=} P(x)$

Remark: very similar to ODEs ($\mathbb{R}^n_{\geq 0} \to \mathbb{R}^n$)


Asynchronous Boolean networks: a bug...


$$f_1(x) \triangleq \neg x_2$$
$$f_2(x) \triangleq \neg x_1$$
$$f_3(x) \triangleq \neg x_1 \land x_2$$

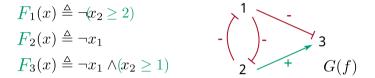



$$f_1(x) \triangleq \neg x_2$$

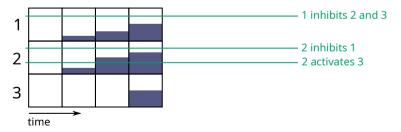
$$f_2(x) \triangleq \neg x_1$$

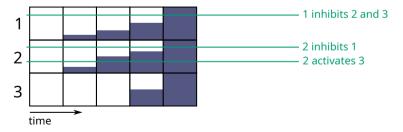
$$f_3(x) \triangleq \neg x_1 \land x_2$$

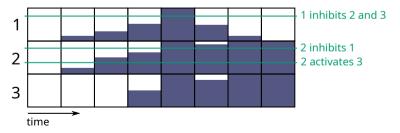
$$f_1(x) \triangleq \neg x_2$$
$$f_2(x) \triangleq \neg x_1$$
$$f_3(x) \triangleq \neg x_1 \land x_2$$

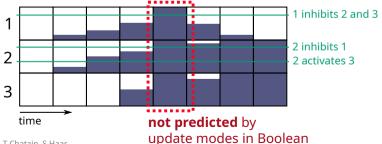


 ⇒ all configurations reachable with any update mode
 (generalized) asynchronous mode

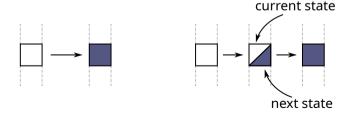


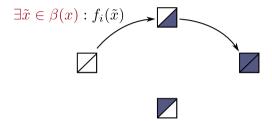


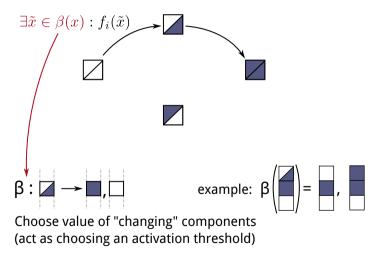


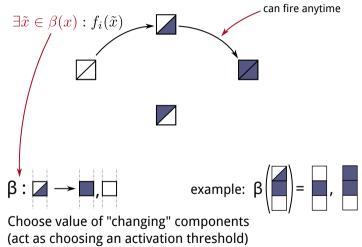


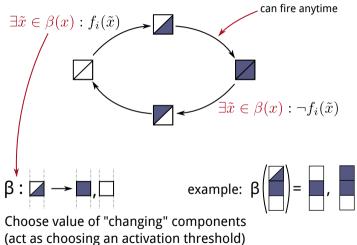
L Paulevé, T Chatain, S Haar

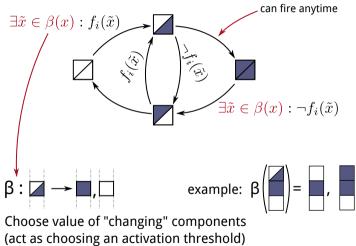

Most Permissive Boolean networks enabling new behaviours

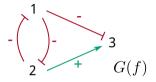

• delay between firing and application of state change

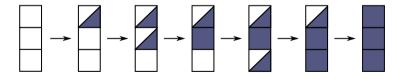

⇒ allow interleaving other state changes


• in "intermediate" states 🛛 🖊

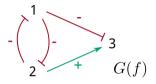

other components choose what they see

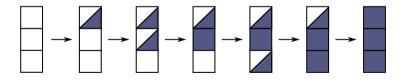






Most permissive semantics of Boolean networks Application to motivating example


$$f_1(x) \triangleq \neg x_2$$
$$f_2(x) \triangleq \neg x_1$$
$$f_3(x) \triangleq \neg x_1 \land x_2$$



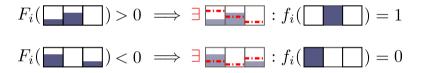
Most permissive semantics of Boolean networks Application to motivating example

$$f_1(x) \triangleq \neg x_2$$
$$f_2(x) \triangleq \neg x_1$$
$$f_3(x) \triangleq \neg x_1 \land x_2$$

⇒ valid with respect to multivalued refinements

Most permissive semantics of Boolean networks Properties of the most permissive semantics

Correct abstraction of multilevel/quantitative systems:

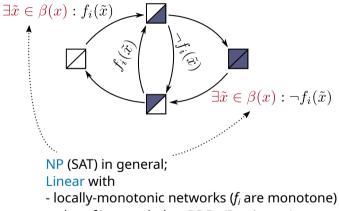

- includes all the transitions of every update mode
- multilevel refinements only remove behaviours
- Reachability can be decided in quadratic nb of transitions (PTIME with locally-monotonic networks, or encoded as BDDs/Petri nets/...; NP-complete otherwise; instead of PSPACE-complete with update modes)
- Attractors are hypercubes (minimal trap spaces)
 - ⇒ finding attractors is NP-complete (instead of PSPACE-complete)
 - \Rightarrow fixpoints are the same as with update modes

Most permissive semantics of Boolean networks Refinements of Boolean Networks

A multivalued network

$$F: \mathbb{M}^n \to \{-1, 0, 1\}^n$$

is a refinement of a Boolean network f iff



Most permissive semantics weakly simulates any multivalued refinement with *any update mode*

(can be extended to ODEs)

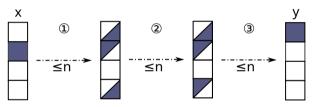
Reachability with the most permissive semantics

Cost of one transition in component i

- when *f* is encoded as BDDs/Petri nets/...

Reachability with the most permissive semantics

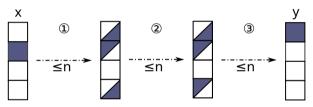
Deciding reachability requires quadratic nb of transitions


Main property: y reachable from $x \Leftrightarrow$ there exists a path of length \leq 3n transitions

Reachability with the most permissive semantics

Deciding reachability requires quadratic nb of transitions

Main property: y reachable from $x \Leftrightarrow$ there exists a path of length $\leq 3n$ transitions

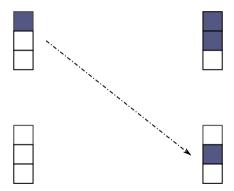

- ① only transitions to "in-between" states*
- ② orient towards final states
- ③ converge to final states

*: some components must not be updated!

Reachability with the most permissive semantics

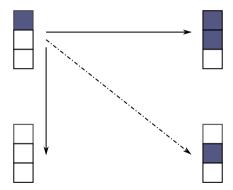
Deciding reachability requires quadratic nb of transitions

Main property: y reachable from $x \Leftrightarrow$ there exists a path of length $\leq 3n$ transitions

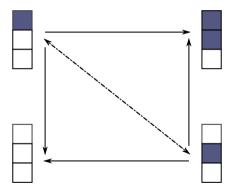

- ① only transitions to "in-between" states*
- ② orient towards final states
- ③ converge to final states

*: some components must not be updated!

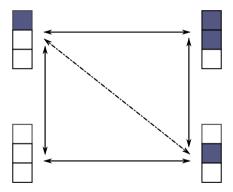
NP in general PTIME w/ locally-monotonic; BDDs; Petri nets..


Attractors with the most permissive semantics Attractor: smallest set of configurations closed by transitions

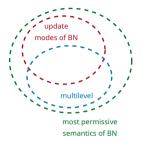
Attractors are hypercubes


Attractors with the most permissive semantics Attractor: smallest set of configurations closed by transitions

Attractors are hypercubes


Attractors with the most permissive semantics Attractor: smallest set of configurations closed by transitions

Attractors are hypercubes


Attractors with the most permissive semantics Attractor: smallest set of configurations closed by transitions

Attractors are hypercubes

Attractors of most permissive semantics = minimal trap spaces Deciding if trap space is minimal = 2 reachability checking

Most permissive semantics of Boolean networks Is most permissive semantics restrictive?

Minimality of abstraction to any "most permissive" transition, there is corresponding multilevel transition (work in progress w/ "most permissive" paths: non-minimal, but tricky counter-examples)

- fixpoints (stable states) are preserved (identical)
- trap spaces: known to be relevant for reasoning with attractors [Klarner et al in Nat. Comp. 2015] [Naldi in Front. Phys. 2018]
- ⇒ most permissive semantics seems still adequate to model differentiation processes !

Most permissive semantics of Boolean networks Boolean network synthesis

WiP (PhD studies of Stéphanie Chevalier LRI-LaBRI-Curie)

Constraints

- Putative influences (domain of Boolean functions)
- +/- reachability between partial configurations
- existence of (reachable) attractors

Output

• Exhaustive enumeration of compatible Boolean networks

SAT approach (Answer-Set Programming)

- Application to cellular differentiation data
- Scalable to >100 nodes (>1000 w/o neg. reachability)

Most permissive semantics of Boolean networks Conclusion

Update modes of Boolean networks (sync, async, etc.):

- difficult to justify for biology (strong implications on dynamics)
- can miss important behaviours [CHP at AUTOMATA'18]
- ⇒ lead to reject valid models of biological systems...
- have limited tractability (model-checking, ...)

Most permissive semantics:

- correct abstraction: guarantees that multilevel/quantitative refinements only remove behaviours
- simpler complexity: reachability PTIME, attractors NP
- ⇒ genome-scale tractability

WiP: assess non-minimality (Juraj Kolčák, LSV-LaBRI PhD student)