Boolean Networks: Beyond Generalized Asynchronicity

Thomas Chatain¹, Stefan Haar¹, Loïc Paulevé²

- ¹ LSV, ENS Paris-Saclay, Inria Saclay, France
- ² CNRS, LRI, Univ Paris-Sud, Univ Paris-Saclay, France

AUTOMATA 2018, Gent, Belgium

Beyond Generalized Asynchronicity Introduction

Boolean Network (BN) $f: \mathbb{B}^n \to \mathbb{B}^n$

Configuration: $x \in \mathbb{B}^n$

Beyond Generalized Asynchronicity Introduction

Beyond Generalized Asynchronicity Introduction

Beyond Generalized Asynchronicity Generalized Asynchronicity

T Chatain, S Haar, L Paulevé

Beyond Generalized Asynchronicity Generalized Asynchronicity

T Chatain, S Haar, L Paulevé

Beyond Generalized Asynchronicity Reachable configurations

Beyond Generalized Asynchronicity Reachable configurations

Can we reach configurations beyond generalized asynchronicity?

T Chatain, S Haar, L Paulevé

Beyond Generalized Asynchronicity Contribution

Can we reach configurations beyond generalized asynchronicity?

- inspiration from Petri nets/concurrency theory
- BN encoding of "interval semantics"
 ⇒ allow delay of update application
 ⇒ enable new reachable configurations
- impact for modelling biological networks
 ⇒ towards consistent Boolean abstractions w.r.t. refined dynamics

Boolean networks as abstractions of dynamics of biological networks

Beyond Generalized Asynchronicity Boolean networks for biological processes Example with gene regulation

Influence graph

Validation w.r.t. observations (e.g. time series data) ⇒ we expect measurements match with reachable configurations

Compatible continuous/multilevel dynamics:

T Chatain, S Haar, L Paulevé

$$f_1(x) \triangleq \neg x_2$$

$$f_2(x) \triangleq \neg x_1$$

$$f_3(x) \triangleq \neg x_1 \land x_2$$

$$f_1(x) \triangleq \neg x_2$$

$$f_2(x) \triangleq \neg x_1$$

$$f_3(x) \triangleq \neg x_1 \land x_2$$

Compatible continuous/multilevel dynamics:

G(f)

Compatible continuous/multilevel dynamics:

T Chatain, S Haar, L Paulevé

Interval Semantics for Boolean networks enabling new behaviours

Beyond Generalized Asynchronicity Interval semantics

- introduced for Petri nets [Chatain et al., Petri Nets'15]
- delay between firing and application of state change

⇒ allow interleaving other state changes

• once fired, a state change is committed to happen

Interval semantics with Boolean networks

Interval semantics with Boolean networks

weakly simulates generalized asynchronous updating: $\forall x, y \in \mathbb{B}^n, \quad x \xrightarrow{f} y \Longrightarrow \tilde{x} \xrightarrow{\tilde{f}} y \xrightarrow{\tilde{f}} \tilde{y}$

Beyond Generalized Asynchronicity Application to motivating example

$$f_1(x) \triangleq \neg x_2$$
$$f_2(x) \triangleq \neg x_1$$
$$f_3(x) \triangleq \neg x_1 \land x_2$$

Beyond Generalized Asynchronicity Application to motivating example

$$f_1(x) \triangleq \neg x_2$$
$$f_2(x) \triangleq \neg x_1$$
$$f_3(x) \triangleq \neg x_1 \land x_2$$

⇒ valid with respect to multivalued refinement

Beyond Generalized Asynchronicity Properties of the encoding

- weakly simulates generalized asynchronous updating
- equivalence of fixpoints
- preserve major features of the influence graph (from which can be derived dynamical properties)

Beyond Generalized Asynchronicity Conclusion

- Encoding of Interval Semantics (Petri nets) with fully asynchronous Boolean networks
- Subsumes generalized asynchronous updates
- Enable new reachable configurations, while preserving architecture of causal relationships
- ⇒ impact for validating BN models in systems biology

Beyond generalized asynchronocity and interval semantics?

• Extension which meet with a correct Boolean abstraction of any multivalued refinement [submitted]