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Biological processes
Cell division
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Biological Processes
Cell differentiation

(source: Crespo et al. Stem cells 2013; 31:2127-2135)
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Biological Processes
Cell reprogramming

(credits: Thomas Graf, Centre for Genomic Regulation (Spain))
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Formal methods for capturing dynamics of biological networks: Computational models for biological processes

Biological networks

DNA

Protein

Protein

Gene

Gene

Catalyst

Signal

Prediction

• Cell response w.r.t. signal+environment

• Long-term behaviours (differentiation)

Control

• Mutations/Perturbations for modifying
cell behaviour

• Trans/De-differentiation

⇒


Computational models of dynamics
−Formal verification
−Automatic reasoning
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Formal methods for capturing dynamics of biological networks: Computational models for biological processes

Computational models of biological networks

[Naldi et al, PLOS Comput Biol 2010]

Network: account for indirect influences between
entities of a system

A biological model is typically built from

• literature (tedious)

• (curated) databases: pull interactions
discovered in very different experimental
settings

• network inference from data: prune networks
to fit with data; identify new interactions

• expert knowledge (people)

⇒ uncertainties / hypotheses remain
⇒ set of candidate models

Need for efficient methods to

• validate, refine candidate models

• make predictions robust to uncertainties
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Computational models of biological networks

Knowledge

a

b c

+ +

-- +

+ Semantics

Ordinary differential equations
da
dt

= −kdaa

db
dt

=
kaba

1 + kaba
1

1 + kbbb
− kdbb

dc
dt

= (
kaca

1 + kaca
kccc

1 + kccc
+)

1
1 + kbcb

− kdcc

Boolean network

fa(a, b, c) = 0

fb(a, b, c) = a ∧ ¬b

fc (a, b, c) = ¬b ∧ (a ∨ c)

Semantics

• Mathematically defines what a state is,

• and how it evolves with time (sequences or chronometry)

• Requires additional parameters, usually not in knowledge
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Formal methods for capturing dynamics of biological networks: Computational models for biological processes

Motivating question
Given a computational model of a network,
how to prove that a behaviour is impossible?

Example: it is impossible to reach the state of interest in the current condition

This question is key for:

• Model verification: do we miss something?

• Control prediction: perturbations which makes a behaviour impossible

Requires a complete assessment of model capabilities:

• simulation

• formal verification

Same principle to prove absence of bugs in computer programs
⇒ similar technologies, very different models.
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Formal methods for capturing dynamics of biological networks: Computational challenges

Dynamics of Qualitative Networks
Example in Boolean case

a

b c

+ +

-- +

fa(a, b, c) = 0

fb(a, b, c) = a ∧ ¬b

fc (a, b, c) = ¬b ∧ (a ∨ c)

State transition graph with asynchronous updating mode

〈a, b, c〉 〈1, 0, 0〉

[René Thomas in Journal of Theoritical Biology, 1973] [A. Richard, J.-P. Comet, G.
Bernot in Modern Formal Methods and Applications, 2006]
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Formal methods for capturing dynamics of biological networks: Computational challenges

Formal Verification of Qualitative Networks

Qualitative models

• Few parameters compared to quantitative models:
⇒ quite direct translation from knowledge to computational model
⇒ results are general (independant of speed of reactions, precise quantities. . . )

• Not suited for quantitative predictions.

State transition graph

• Allows an exhaustive view of model capabilities;

• Automatic “model checking” w.r.t. specifications.

but. . .
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Formal methods for capturing dynamics of biological networks: Computational challenges

Tractability issues

Model validation (model checking)

• Combinatorial explosion of behaviours
networks with 100 to 1,000 nodes: 2100 - 1030 to 21 000 - 10300 states

• Large range of initial conditions to consider.

• Difficult to extract comprehensive proofs of (im)possibility.

Prediction for control (e.g., mutations to block/enforce behaviour)

• Model checking complexity

• + too many candidates for brute-force screening ⇒ deduction/abduction

Network inference

• Combinatorial explosion of model parameters

• Data involve time series: reachability checking complexity..

⇒ avoid building the state graph! compute something else
(abstraction)

Loïc Paulevé 14/29
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Formal methods for capturing dynamics of biological networks: Abstract interpretation of Boolean networks

Semantics of Boolean networks

Definition (Boolean network)
f = 〈f1, · · · , fn〉 with fi : {0, 1}n → {0, 1}
Example:

f1(x) = 0

f2(x) = x1 ∧ ¬x2
f3(x) = ¬x2 ∧ (x1 ∨ x3)

Definition (Asynchronous transition)
Irreflexixe relation →⊆ {0, 1}n × {0, 1}n such that

x → y ⇐⇒ ∆(x , y) = {i} ∧ yi = fi (x)

where ∆(x , y) = {i ∈ {1, · · · , n} | xi 6= yi}

Loïc Paulevé 16/29



Formal methods for capturing dynamics of biological networks: Abstract interpretation of Boolean networks

Transition Prime Implicants
Consider a Boolean network f where

f1(x) = x2

there exists 2n−2 transitions of the form

01x2 · · · xn → 11x2 · · · xn

Prime implicants of transitions

• Express the minimal cause of a node value change vi : a b

Definition
C is a prime implicants for a node value change vi : a b iff its a conjunction of
literals of the form [vj = d ] such that

[vi = a ∧ C ] is a prime implicant of [fi (v) = b]

We write it 〈vi : a b,C〉

In our case, only one transition prime implicant for v1 : 0 1:

〈v1 : 0 1, [v2 = 1]〉

Loïc Paulevé 17/29
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Formal methods for capturing dynamics of biological networks: Abstract interpretation of Boolean networks

Transitions Prime Implicants
Illustration

f1(x) = x2 ∨ x3

Implicants for the transition 〈011〉 → 〈111〉

011 111

v3 = 1

v2 = 1

⇒ 2 prime implicants: 〈v1 : 0 1, [ v2 = 1 ]〉; 〈v1 : 0 1, [ v3 = 1 ]〉

Implicants for the transition 〈100〉 → 〈000〉

100 000
v2 = 0 , v3 = 0

⇒ 1 prime implicant: 〈v1 : 1 0, [ v2 = 0 ∧ v3 = 0 ]〉
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Formal methods for capturing dynamics of biological networks: Abstract interpretation of Boolean networks

Galois connections

A Galois connection (C, ≤) −−−→←−−−α
γ

(A,�) ensures that

• ∀c ∈ C , c ≤ γ(α(c))

• ∀a ∈ A, α(γ(a)) � a

Concrete transitions vs abstract prime implicants

(℘(→),⊆) −−−→←−−−α
γ

(℘(transitions prime implicants),⊆)

where | → | ∈ O(n · 2n); |transition prime implicants| ∈ O(n · 2d )
d is the number of nodes a node’s fi depends on (nb of direct regulators)

Concrete states vs abstract literals L = {[vi = n] | i ∈ {1, · · · , n}, b ∈ {0, 1}}

(℘({0, 1}n),⊆) −−−→←−−−
α̊

γ̊
(℘(L),⊆)

where |{0, 1}n| = 2n; |L| = 2 · n
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Formal methods for capturing dynamics of biological networks: Abstract interpretation of Boolean networks

Over-approximation of reachability

Concrete reach

S = {x , y , z , z ′}
T = {x → y ,

y → z , y → z ′}

Reachable transitions from x
=

lfp reach

Abstract reach#

S# = {[v1 = 0], [v2 = 0], [v3 = 0],

[v2 = 1] }

T# = {〈v2 : 0 1, [v1 = 0]〉,
〈v1 : 0 1, [v2 = 1]〉,
〈v3 : 0 1, [v1 = 0 ∧ v2 = 1]〉}

α(lfp reach) ⊆ lfp reach#
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Formal methods for capturing dynamics of biological networks: Abstract interpretation of Boolean networks

Goal-oriented properties

Goal: reach a state verifying [vg = 1]

Over-approximation of direct paths [CMSB 2016; CONCUR 2017]

• Acyclic trajectories where all transitions are causally related to the goal

• Over-approximation in linear time with nb of transition prime implicants

• ⇒ model reduction; goal-driven exploration of the state space

Under-approximation of reachability [TCS 2015]

• Sufficient condition on a set of prime implicants to ensure existence of a
concrete trajectory from an initial state

• Deciding if a set satisfies sufficient condition: linear time

• Finding a set satisfying sufficient condition: NP
(choices are the different implicants for a same vi : a b)
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Applications

initial state(s) goal state(s) initial state(s) goal state(s)

initial state(s) goal state(s)

reachability cut sets

mutations bifurcations

initial state(s) goal state(s)

{a=0,b=1}

c 0 -> 1 when b=1

c 0 -> 1 when b=1

KO b
(lock b=0)
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Formal Approximations
Examples of implementations

Reachability [LP, M Magnin, O Roux in MSCS 2012; M Folschette, LP, M Magnin, O Roux in TCS 2015]

• Over-approximation (necessary condition): OA(s →∗ g)
P w/ # prime implicants

• Under-approximation (sufficient condition): UA(s →∗ g)
NP w/ # prime implicants

Cut-sets [LP, G Andrieux, H Koeppl at CAV 2013]

• UA: ai , bj , · · · : disable(ai , bj , · · · ) ∧ ¬OA(s →∗ g)

Mutations for blocking g [LP at CMSB 2017]

• UA: ai , bj , · · · : lock(ai , bj , · · · ) ∧ ¬OA(s →∗ g)

Bifurcations [L F Fitime, C Guziolowski, O Roux, LP in BMC Algorithms for Mol Bio, 2017]

• UA: sb, tb : UA(s →∗ sb) ∧ UA(sb →∗ g) ∧ ¬OA(sb · tb →∗ g)
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Formal approximations
Summary of the approach

Abstract interpretation of Boolean networks
• Reduce complexity from exp with nb nodes to nb transition prime implicants

• worst case: exp with in-degree d ;
• monotonic functions: <

( d
d/2

)
;

• biological networks: most of time linear/poly with nb of activators

• SAT implementation of formal approximations

• Low number of variables compared to nb reachable states

• Is generalized to muti-valued networks and automata networks/petri nets
(NP approximation of PSPACE problems)

⇒ highly tractable for large biological networks

Compared to Bounded Model-Checking (BMC):

• BMC is an under-approximation only, no necessary condition

• BMC can lead to a huge, when not intractable, number of variables (states
reachable in less than n transitions)

• BMC gives incomplete capture of trajectories (crucial for control)
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In practice

Software Pint - Static analyzer for dynamics of automata networks
http://loicpauleve.name/pint [CMSB 2017]

• Input: Boolean/discrete networks; automata networks; 1-bounded Petri nets

• Answer-Set Programming implementation for solution enumeration (clingo)

• Scalable to networks between 100 to 10,000 nodes

Tutorial on http://tmpnb.loicpauleve.name
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Related projects

• Abstract interpretation

• Concurrency; partial order approaches; unfoldings

• Formalization of biological problems into general computer science problems
⇒ necessary to attract formal computer science people

Parametric Boolean networks

• Boolean network identification from time series data [BioSystems 2016]

• Abstract interpretation with unfolding semantics [SASB 2016; PhD thesis of Juraj Kolčák]

Cellular reprogramming

• France-Luxembourg project “AlgoReCell” http://algorecell.lri.fr (2017)

• Teams: computer science; computational systems biology; experimental
biologists

• Experimental goal: trans-differentiate adipocytes (fat) into osteoblasts (bone)
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Outlook

In systems biology

• Need for detailed networks, but lack of precise knowledge

• ⇒ Boolean networks are more and more popular

• Success stories start to come out

Computational methods allow to address larger and larger networks;
quite soon at similar scale as genome. . .

BUT

Major remaining challenge: deal with huge number of candidate models

• network inference lead to many networks, equivalent w.r.t. available data

• most methods take as input a single model. . .

• how to make convincing predictions?
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