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Formal methods for capturing dynamics of biological networks

Formalization of biological problems into general computer science problems

e help with automated reasoning on biological knowledge/models

e challenging: bring classes of difficult problems
= motivation for new theoretical /technical developments

e try to attract formal computer scientists
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Biological processes
Cell division

(source: Genentech, https://www.youtube.com/watch?v=0DjDUUhGVsl)
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Biological Processes
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Biological Processes
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Biological processes

Numerous modelling approaches

e Structure of molecules (RNA, DNA, proteins)
= predict dockings, change of conformation/function, ...

e Quantitative models (ODEs, stochastic population models, .. .)
= track evolution of concentrations/copy number of molecules
= requires a huge amount of precise paramaters

e Qualitative models (Boolean networks, threshold networks, ...)
= focus on causal processes
= abstract/generic view of the system, requires few parameters

e Multi-cellular spatial models, organs, individuals, ecology, ...

No “true” model, each modelling approach is justified on its own.
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Signalling and gene networks

Prediction
e Cell response w.r.t. signal+environment

e Long-term behaviours (differentiation)

Control

e Mutations/Perturbations for modifying
cell behaviour

e Trans/De-differentiation
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Signalling and gene networks

Protein

Prediction
e Cell response w.r.t. signal+environment

e [ong-term behaviours (differentiation
g ( ) Computational models of dynamics

Control = ¢ —Formal verification

e Mutations/Perturbations for modifying —Automatic reasoning
cell behaviour

e Trans/De-differentiation
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Computational models of biological networks

G O
o8 Network: account for indirect influences between
i e — entities of a system

[Naldi et al, PLOS Comput Biol 2010]
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Computational models of biological networks
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[Naldi et al, PLOS Comput Biol 2010]
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Network: account for indirect influences between
entities of a system

A biological model is typically built from
o literature (tedious)

o (curated) databases: pull interactions
discovered in very different experimental
settings

e network inference from data: prune networks
to fit with data; identify new interactions

e expert knowledge (people)
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Computational models of biological networks
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Network: account for indirect influences between
entities of a system

A biological model is typically built from
o literature (tedious)

o (curated) databases: pull interactions
discovered in very different experimental
settings

e network inference from data: prune networks
to fit with data; identify new interactions

e expert knowledge (people)

= uncertainties / hypotheses remain
= set of candidate models

Need for efficient methods to
e validate, refine candidate models

e make predictions robust to uncertainties

10/29



Formal methods for capturing dynamics of biological networks

@ Boolean networks
Definition
Properties of interest

Loic Paulevé

. Boolean networks

Outline

11/29



Formal methods for capturing dynamics of biological networks: Boolean networks

Semantics of Boolean networks

Definition (Boolean network)
f=1(fi, - f) with f : {0,1}" — {0, 1}
Example:
fi(x)=0
fa(x) = x1 A —=x2
fz3(x) = 2 A (X1 V Xx3)

Definition (Asynchronous transition)
Irreflexixe relation — C {0, 1}"” x {0, 1}" such that
x = y<= A(x,y)={i} Ny, = fi(x)

where A(x,y) ={i€{1,--- . n} | x #vyi}
(non-deterministic semantics)
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Example
Influence graph (knowledge) Boolean network
! fi(x) =0
/ \ £00 = 1 A
_ _ + f3(x) = =xo A (X1 V x3)

2 — 3 D
State transition graph with asynchronous updating mode

(1,0,0)

[René Thomas in Journal of Theoritical Biology, 1973] [A. Richard, J.-P. Comet, G.
Bernot in Modern Formal Methods and Applications, 2006]
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Example
Influence graph (knowledge) Boolean network
! A(x) =0
/ \ £00 = 1 A
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Properties of interest

e

(1,0,0) — (1,0, 1) (0,0,0) (0,0,1)

(1,1,0) «—— (1,1,1) (0,1,0) «—— (0,1,1)

T~ >

e Fixpoints: f(x) = x
e Attractors: smallest set of states closed by —
(terminal strongly connected components)

e Reachability: there is a path from x to y
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Tractability issues

Model validation (model checking)

e Combinatorial explosion of behaviours
networks with 100 to 1,000 nodes: 2100 - 1030 to 21000 _ 10300 states

e BDDs/BMC/...have a hard time on biological networks. ..
e Difficult to extract comprehensive proofs of (im)possibility.
(Reachability is PSPACE-complete)
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Tractability issues

Model validation (model checking)

e Combinatorial explosion of behaviours
networks with 100 to 1,000 nodes: 2100 - 1030 to 21000 _ 10300 states

e BDDs/BMC/...have a hard time on biological networks. ..
e Difficult to extract comprehensive proofs of (im)possibility.
(Reachability is PSPACE-complete)

Prediction for control (e.g., perturbations to prevent/enforce behaviour)
e Model checking complexity

e + too many candidates for brute-force screening = deduction/abduction

Network inference (find Boolean networks satisfying reachability constraints)
e Combinatorial explosion of model parameters

e Data involve time series: reachability checking complexity..
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Abstractions for transient dynamics of Boolean Networks

Intuition: exploit the low scope of transitions (concurrency)
e Static analysis by abstract interpretation [Cousot and Cousot 77]

e Intermediate representation (Local Causality Graph) to reason on
necessary/sufficient conditions for transitions

e Implementation mixes algorithms on graphs and SAT (ASP).

Basically:
Approx. of PSPACE problems with P.e? or NP.e? problems

where d is the in-degree of nodes in the Boolean network
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Transition Prime Implicants

Consider a Boolean network f where
fi(x) = x
there exists 2"~2 transitions of the form

0lxg - xp = 11x2 - Xp
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Transition Prime Implicants
Consider a Boolean network f where
fi(x) = x
there exists 2"~2 transitions of the form
01xo -+ xp — 11x0 -+ Xxp

Prime implicants of transitions

e Express the minimal cause of a node value change v; : a~» b
Definition
C is a prime implicants for a node value change v, : a ~ b iff its a conjunction of
literals of the form [v; = d] such that

[vi=aA C]is a prime implicant of [fj(v) = b]

We write it (v;: a~> b, C)
In our case, only one transition prime implicant for vy : 0 ~~ 1:

(v1:0~1,[vo=1])
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Transitions Prime Implicants
Illustration

f]_(X) =Xx2 V X3

Implicants for the transition (011) — (111)
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Transitions Prime Implicants
Illustration

f]_(X) =Xx2 V X3
Implicants for the transition (011) — (111)

vo =1
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Illustration
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Transitions Prime Implicants
Illustration

fi(x) =x VX3
Implicants for the transition (011) — (111)
vo =1
>
COPPED.

vz =1

= 2 prime implicants: (v1 : 0~ 1,[voa=1]); (vi: 0~ 1,[va=1])
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Transitions Prime Implicants
Illustration

fl(X) = X2 V X3

Implicants for the transition (011) — (111)

vo =1

oy
~___

vz =1
= 2 prime implicants: (v1 : 0~ 1,[voa=1]); (vi: 0~ 1,[va=1])
Implicants for the transition (100) — (000)

vp=0,v3=0

Go)———— (o)
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Transitions Prime Implicants
Illustration

fl(X) = X2 V X3
Implicants for the transition (011) — (111)

vo =1

@ @

~_ 7
vz =1

= 2 prime implicants: (vi : 0~ 1,[va=1]); (vi:0~1,[vz=1])

Implicants for the transition (100) — (000)

vp=0,v3=0
(00) ———— (o)

= 1 prime implicant: (v :1~0,[v2=0 A v3=0])
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Local Causality Graph (LCG)
e Initial state (00010); Goal [vi = 1]

Node state

State change \

Prime implicant

vi:0~1

IV3:O‘ ’V4=1}—>V4:0Wl

vo:0~ 1 v3:0~~0 vg4:1l~1

b=t w0
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Local Causality Graph (LCG)
e Initial state (00010); Goal [vi = 1]

Node state

State change

Prime implicant Vit

vo =1 IV3:O‘ ’V4=1}—>V4:0W1
Necessary condition for reachability
OA(x —* [vi = 1]) = there is an acyclic traversal from v; =1 s.t.

v ® node state change — follow at least one child;
e other nodes — follow all children;
e terminates on empty “local cause” (leafs).

(can be verified linearly in the size of the LCG).
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Local Causality Graph (LCG)
e Initial state (00010); Goal [vi = 1]

Node state

State change \

Prime implicant

vi:0~1

’V3=0‘ ’V4=1}—>V4:0W1

L

vo:0~ 1 v3:0~~0 vg4:1l~1

Sufficient condition for reachability
UA(x —* [v1 = 1]) = 3 particular acyclic sub-LCG

NP formulation (find the right combination of prime implicants).
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Local Causality Graph (LCG)
e Initial state (00010); Goal [vi = 1]

Node state

State change \

Prime implicant

vi:0~1

IV3:O‘ ’V4=1}—>V4:0Wl

L

vo:0~ 1 v3:0~~0 vg4:1l~1

Formal approximations of reachability

UA(x =% [v1 = 1]) = x =* [v1 = 1] = OA(x —=* [vi =1])
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Applications

initial state(s) goal state(s) initial state(s) goal state(s)

reachability cut sets

Ko b c0->1when b=1
(lock b=0)

initial state(s) goal state(s) initial state(s) goal state(s)

mutations bifurcations
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Applications

initial state(s)  cut set goal state(s)

Common features (markers) of all trajectories (necessary steps)
Under-approximation:

aj, bj, - - - : disable(aj, bj, ---) A~ OA(s =" g)
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Applications

. .
. 4
AN Q
~ 4
.

-~
Scene=”

initial state(s) goal state(s)

mutations

Control of reachability
Under-approximation:

aj, bj, -+ :lock(aj, bj, ---) A~ OA(s =" g)
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Applications

¢ 0->1 when b=1

PL PN
- -~

.
’
Q
0
.
.

-~ .
h TN 3

goal state(s)

.
.
.
.
.
-~

initial state(s)

bifurcations

Key transitions responsible for capability loss (differentiation)
Under-approximation:
Sp, tp : UA(s = sp) AUA(sp =™ g) A~ OA(sp - tp =" g)
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Formal Approximations

Reachability [LP, M Magnin, O Roux in MSCS 2012; M Folschette, LP, M Magnin, O Roux in TCS 2015]

e Over-approximation (necessary condition): OA(s —* g)
P w/ # prime implicants

e Under-approximation (sufficient condition): UA(s —* g)
NP w/ # prime implicants

(# prime implicants: e? in general; (d72) monotonous functions; much less in practice)

Cut-sets [LP, G Andrieux, H Koeppl at CAV 2013]
e UA: a;, bj,--- : disable(a;, bj,---) A = OA(s =* g)

Mutations for blocking g [LP at CMSB 2017]
e UA: a;, bj, -+ :lock(aj, bj,---) A= OA(s =* g)

Bifurcations [L F Fitime, C Guziolowski, O Roux, LP in BMC Algorithms for Mol Bio, 2017]
o UA: s, tp - UA(s —* sp) A UA(sp —=* g) A = OA(sp - tp —* g)
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In practice

Software Pint - Static analyzer for dynamics of automata networks
http://loicpauleve.name/pint [CMSB 2017]

e Input: Boolean/discrete networks; automata networks; 1-bounded Petri nets
e Answer-Set Programming implementation for solution enumeration (clingo)
e Scalable to networks between 100 to 10,000 nodes

—_—
Jupyter
e

o docker

Tutorial on http://tmpnb.loicpauleve.name
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In practice

Software Pint - Static analyzer for dynamics of automata networks
http://loicpauleve.name/pint [CMSB 2017]

e Input: Boolean/discrete networks; automata networks; 1-bounded Petri nets
e Answer-Set Programming implementation for solution enumeration (clingo)
e Scalable to networks between 100 to 10,000 nodes

«
Jupyter
gy

N docker

Tutorial on http://tmpnb.loicpauleve.name

CaspoTS - Boolean network identification from time series data
https://github.com/pauleve/caspots [BioSystems 2016]

e Input: influence graph + reachability constraints
e Ouput: all minimal Boolean networks that satisfy both constraints
e Answer-Set Programming implementation (over-approximation)

e Scalable to networks up to 50-100 nodes
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Outlook

In systems biology
e Need for global networks, but lack of precise knowledge
e = Boolean networks are more and more popular

e Success stories start to come out

Computational methods allow to address larger and larger networks;
quite soon at genome scale. ..
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Outlook

In systems biology
e Need for global networks, but lack of precise knowledge
e = Boolean networks are more and more popular

e Success stories start to come out

Computational methods allow to address larger and larger networks;
quite soon at genome scale. ..

BUT

Major remaining challenge: deal with huge number of candidate models
e network inference lead to many networks, equivalent w.r.t. available data
e most methods take as input a single model. ..

e how to make convincing predictions? (model counting...)

Loic Paulevé 28/29



Formal methods for capturing dynamics of biological networks

LSV/Inria Saclay, ENS Cachan
e Stefan Haar

Univ. Luxembourg

® Thomas Sauter
® Thomas Chatain ® [asse Sinkonnen
e Stefan Schwoon ® Julia Becker
e Hugues Mandon e Jun Pang

* Juraj Koleak LCSB, Luxembourg
Institut Curie e Antonio del Sol
® Laurence Calzone ® Andras Hartmann
e Andrei Zinovyev e Andrzej Mizera

® Sacha Zickenrott

Funding

@ R

Loic Paulevé

Acknowledgements

Masaryk University
e David Safranek

IRISA, Rennes Dyliss

e Anne Siegel

LS2N, Nantes MeForBio
e Olivier Roux
e Morgan Magnin
® Maxime Folschette

® | ouis Fippo Fitime

Luxembourg National
Fund

29/29



	Computational models for biological processes
	Networks, dynamics

	Boolean networks
	Definition
	Properties of interest

	Static analysis of Boolean networks by abstract interpretation
	Main principle
	Over- and under-approximation of trajectories
	Applications

	Perspectives

