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Formal methods for capturing dynamics of biological networks

Formalization of biological problems into general computer science problems

• help with automated reasoning on biological knowledge/models

• challenging: bring classes of difficult problems
⇒ motivation for new theoretical/technical developments

• try to attract formal computer scientists
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Formal methods for capturing dynamics of biological networks: Computational models for biological processes

Biological processes
Cell division

(source: Genentech, https://www.youtube.com/watch?v=oDjDUUhGVsI)
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Formal methods for capturing dynamics of biological networks: Computational models for biological processes

Biological Processes
Cell differentiation

(source: Crespo et al. Stem cells 2013; 31:2127-2135)
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Formal methods for capturing dynamics of biological networks: Computational models for biological processes

Biological Processes
Cell reprogramming

(credits: Thomas Graf, Centre for Genomic Regulation (Spain))

Loïc Paulevé 7/29



Formal methods for capturing dynamics of biological networks: Computational models for biological processes

Biological processes

Numerous modelling approaches

• Structure of molecules (RNA, DNA, proteins)
⇒ predict dockings, change of conformation/function, . . .

• Quantitative models (ODEs, stochastic population models, . . . )
⇒ track evolution of concentrations/copy number of molecules
⇒ requires a huge amount of precise paramaters

• Qualitative models (Boolean networks, threshold networks, . . . )
⇒ focus on causal processes
⇒ abstract/generic view of the system, requires few parameters

• Multi-cellular spatial models, organs, individuals, ecology, . . .

No “true” model, each modelling approach is justified on its own.
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Formal methods for capturing dynamics of biological networks: Computational models for biological processes

Signalling and gene networks

DNA

Protein

Protein

Gene

Gene

Catalyst

Signal

Prediction

• Cell response w.r.t. signal+environment

• Long-term behaviours (differentiation)

Control

• Mutations/Perturbations for modifying
cell behaviour

• Trans/De-differentiation

⇒


Computational models of dynamics
−Formal verification
−Automatic reasoning
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Formal methods for capturing dynamics of biological networks: Computational models for biological processes

Computational models of biological networks

[Naldi et al, PLOS Comput Biol 2010]

Network: account for indirect influences between
entities of a system

A biological model is typically built from

• literature (tedious)

• (curated) databases: pull interactions
discovered in very different experimental
settings

• network inference from data: prune networks
to fit with data; identify new interactions

• expert knowledge (people)

⇒ uncertainties / hypotheses remain
⇒ set of candidate models

Need for efficient methods to

• validate, refine candidate models

• make predictions robust to uncertainties
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Formal methods for capturing dynamics of biological networks: Boolean networks
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Formal methods for capturing dynamics of biological networks: Boolean networks

Semantics of Boolean networks

Definition (Boolean network)
f = 〈f1, · · · , fn〉 with fi : {0, 1}n → {0, 1}
Example:

f1(x) = 0

f2(x) = x1 ∧ ¬x2
f3(x) = ¬x2 ∧ (x1 ∨ x3)

Definition (Asynchronous transition)
Irreflexixe relation →⊆ {0, 1}n × {0, 1}n such that

x → y ⇐⇒ ∆(x , y) = {i} ∧ yi = fi (x)

where ∆(x , y) = {i ∈ {1, · · · , n} | xi 6= yi}
(non-deterministic semantics)
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Formal methods for capturing dynamics of biological networks: Boolean networks

Example
Influence graph (knowledge)

1

2 3

+ +

-- +

Boolean network

f1(x) = 0

f2(x) = x1 ∧ ¬x2
f3(x) = ¬x2 ∧ (x1 ∨ x3)

State transition graph with asynchronous updating mode

〈1, 0, 0〉

[René Thomas in Journal of Theoritical Biology, 1973] [A. Richard, J.-P. Comet, G.
Bernot in Modern Formal Methods and Applications, 2006]
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Formal methods for capturing dynamics of biological networks: Boolean networks

Properties of interest

〈1, 0, 0〉 〈1, 0, 1〉 〈0, 0, 0〉 〈0, 0, 1〉

〈1, 1, 0〉 〈1, 1, 1〉 〈0, 1, 0〉 〈0, 1, 1〉

• Fixpoints: f (x) = x

• Attractors: smallest set of states closed by →
(terminal strongly connected components)

• Reachability: there is a path from x to y
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Formal methods for capturing dynamics of biological networks: Boolean networks

Tractability issues

Model validation (model checking)

• Combinatorial explosion of behaviours
networks with 100 to 1,000 nodes: 2100 - 1030 to 21 000 - 10300 states

• BDDs/BMC/. . . have a hard time on biological networks. . .

• Difficult to extract comprehensive proofs of (im)possibility.

(Reachability is PSPACE-complete)

Prediction for control (e.g., perturbations to prevent/enforce behaviour)

• Model checking complexity

• + too many candidates for brute-force screening ⇒ deduction/abduction

Network inference (find Boolean networks satisfying reachability constraints)

• Combinatorial explosion of model parameters

• Data involve time series: reachability checking complexity..
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Formal methods for capturing dynamics of biological networks: Abstract interpretation of Boolean networks
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Formal methods for capturing dynamics of biological networks: Abstract interpretation of Boolean networks

Abstractions for transient dynamics of Boolean Networks

Intuition: exploit the low scope of transitions (concurrency)

• Static analysis by abstract interpretation [Cousot and Cousot 77]

• Intermediate representation (Local Causality Graph) to reason on
necessary/sufficient conditions for transitions

• Implementation mixes algorithms on graphs and SAT (ASP).

Basically:
Approx. of PSPACE problems with P.ed or NP.ed problems
where d is the in-degree of nodes in the Boolean network
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Formal methods for capturing dynamics of biological networks: Abstract interpretation of Boolean networks

Transition Prime Implicants
Consider a Boolean network f where

f1(x) = x2

there exists 2n−2 transitions of the form

01x2 · · · xn → 11x2 · · · xn

Prime implicants of transitions

• Express the minimal cause of a node value change vi : a b

Definition
C is a prime implicants for a node value change vi : a b iff its a conjunction of
literals of the form [vj = d ] such that

[vi = a ∧ C ] is a prime implicant of [fi (v) = b]

We write it 〈vi : a b,C〉

In our case, only one transition prime implicant for v1 : 0 1:

〈v1 : 0 1, [v2 = 1]〉
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Formal methods for capturing dynamics of biological networks: Abstract interpretation of Boolean networks

Transitions Prime Implicants
Illustration

f1(x) = x2 ∨ x3

Implicants for the transition 〈011〉 → 〈111〉

011 111

v3 = 1

v2 = 1

⇒ 2 prime implicants: 〈v1 : 0 1, [ v2 = 1 ]〉; 〈v1 : 0 1, [ v3 = 1 ]〉

Implicants for the transition 〈100〉 → 〈000〉

100 000
v2 = 0 , v3 = 0

⇒ 1 prime implicant: 〈v1 : 1 0, [ v2 = 0 ∧ v3 = 0 ]〉
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Formal methods for capturing dynamics of biological networks: Abstract interpretation of Boolean networks

Local Causality Graph (LCG)

• Initial state 〈00010〉; Goal [v1 = 1]

v1 = 1

v1 : 0 1

v4 = 1v3 = 0

v4 : 1 1

v4 : 0 1

v3 : 0 0

v2 = 1

v2 : 0 1

v5 = 1 v5 : 0 1

Node state

State change

Prime implicant
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v1 = 1

v1 : 0 1

v4 = 1v3 = 0

v4 : 1 1

v4 : 0 1

v3 : 0 0

v2 = 1

v2 : 0 1

v5 = 1 v5 : 0 1

Node state

State change

Prime implicant

Necessary condition for reachability
OA(x →∗ [v1 = 1]) ≡ there is an acyclic traversal from v1 = 1 s.t.

• node state change → follow at least one child;

• other nodes → follow all children;

• terminates on empty “local cause” (leafs).

(can be verified linearly in the size of the LCG).
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Sufficient condition for reachability
UA(x →∗ [v1 = 1]) ≡ ∃ particular acyclic sub-LCG

NP formulation (find the right combination of prime implicants).
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Formal methods for capturing dynamics of biological networks: Abstract interpretation of Boolean networks

Local Causality Graph (LCG)

• Initial state 〈00010〉; Goal [v1 = 1]

v1 = 1

v1 : 0 1

v4 = 1v3 = 0

v4 : 1 1

v4 : 0 1

v3 : 0 0

v2 = 1

v2 : 0 1

v5 = 1 v5 : 0 1

Node state

State change

Prime implicant

Formal approximations of reachability

UA(x →∗ [v1 = 1])⇒ x →∗ [v1 = 1]⇒ OA(x →∗ [v1 = 1])
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Formal methods for capturing dynamics of biological networks: Abstract interpretation of Boolean networks

Applications

initial state(s) goal state(s) initial state(s) goal state(s)

initial state(s) goal state(s)

reachability cut sets

mutations bifurcations

initial state(s) goal state(s)

{a=0,b=1}

c 0 -> 1 when b=1

c 0 -> 1 when b=1

KO b
(lock b=0)
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Formal methods for capturing dynamics of biological networks: Abstract interpretation of Boolean networks

Applications

initial state(s) goal state(s)cut set

{a=0,b=1}

Common features (markers) of all trajectories (necessary steps)

Under-approximation:

ai , bj , · · · : disable(ai , bj , · · · ) ∧ ¬OA(s →∗ g)
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Formal methods for capturing dynamics of biological networks: Abstract interpretation of Boolean networks

Applications

initial state(s) goal state(s)

mutations

KO b
(lock b=0)

Control of reachability

Under-approximation:

ai , bj , · · · : lock(ai , bj , · · · ) ∧ ¬OA(s →∗ g)
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Formal methods for capturing dynamics of biological networks: Abstract interpretation of Boolean networks

Applications

bifurcations

initial state(s) goal state(s)

c 0 -> 1 when b=1

c 0 -> 1 when b=1

Key transitions responsible for capability loss (differentiation)

Under-approximation:

sb, tb : UA(s →∗ sb) ∧ UA(sb →∗ g) ∧ ¬OA(sb · tb →∗ g)
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Formal methods for capturing dynamics of biological networks: Abstract interpretation of Boolean networks

Formal Approximations

Reachability [LP, M Magnin, O Roux in MSCS 2012; M Folschette, LP, M Magnin, O Roux in TCS 2015]

• Over-approximation (necessary condition): OA(s →∗ g)
P w/ # prime implicants

• Under-approximation (sufficient condition): UA(s →∗ g)
NP w/ # prime implicants

(# prime implicants: ed in general;
( d

d/2

)
monotonous functions; much less in practice)

Cut-sets [LP, G Andrieux, H Koeppl at CAV 2013]

• UA: ai , bj , · · · : disable(ai , bj , · · · ) ∧ ¬OA(s →∗ g)

Mutations for blocking g [LP at CMSB 2017]

• UA: ai , bj , · · · : lock(ai , bj , · · · ) ∧ ¬OA(s →∗ g)

Bifurcations [L F Fitime, C Guziolowski, O Roux, LP in BMC Algorithms for Mol Bio, 2017]

• UA: sb, tb : UA(s →∗ sb) ∧ UA(sb →∗ g) ∧ ¬OA(sb · tb →∗ g)
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Formal methods for capturing dynamics of biological networks: Abstract interpretation of Boolean networks

In practice

Software Pint - Static analyzer for dynamics of automata networks
http://loicpauleve.name/pint [CMSB 2017]

• Input: Boolean/discrete networks; automata networks; 1-bounded Petri nets

• Answer-Set Programming implementation for solution enumeration (clingo)

• Scalable to networks between 100 to 10,000 nodes

Tutorial on http://tmpnb.loicpauleve.name

CaspoTS - Boolean network identification from time series data
https://github.com/pauleve/caspots [BioSystems 2016]

• Input: influence graph + reachability constraints

• Ouput: all minimal Boolean networks that satisfy both constraints

• Answer-Set Programming implementation (over-approximation)

• Scalable to networks up to 50-100 nodes

Loïc Paulevé 26/29
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Outlook

In systems biology

• Need for global networks, but lack of precise knowledge

• ⇒ Boolean networks are more and more popular

• Success stories start to come out

Computational methods allow to address larger and larger networks;
quite soon at genome scale. . .

BUT

Major remaining challenge: deal with huge number of candidate models

• network inference lead to many networks, equivalent w.r.t. available data

• most methods take as input a single model. . .

• how to make convincing predictions? (model counting. . . )
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