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Causal Analysis in Computational Models of Biological Networks Dynamics

Self-introduction

CNRS Researcher in computer science lab at Univ Paris-Sud

PhD from Ecole Centrale de Nantes on computational systems biology

Research topic
Methods for automatic reasoning on large biological networks

From computer science to biology

• ANR HyClock (F. Delaunay): analysing detailed models of circadian clock and
cell cycle.

• Starting project: ANR-FNR AlgoReCell on models and algorithms for cellular
reprogramming inc. wet lab experiments (partners: Curie; Inria; Univ of
Luxembourg).
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Causal Analysis in Computational Models of Biological Networks Dynamics

Cellular Dynamics

Cell state 
at t=0

Cell state 
of interest

Initial state(s)/Goal state(s)

• Trajectory existence (reachability)

• Reasoning on all trajectories: e.g., common features

• Control: perturbations to avoid/enforce goal reachability
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1 Formal methods for biological networks
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3 Examples of applications
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Causal Analysis in Computational Models of Biological Networks Dynamics: Formal methods

Computational models of biological networks

[Naldi et al, PLOS Comput Biol 2010]

Network: account for indirect influences between
entities of a system

A biological model is typically built from

• literature (tedious)

• (curated) databases: pull interactions
discovered in very different experimental
settings

• network inference from data: prune networks
to fit with data; identify new interactions

• expert knowledge (people)

⇒ uncertainties / hypotheses remain
⇒ set of candidate models

Need for efficient methods to

• discriminate, refine candidate models

• predictions robust to model uncertainties.
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Computational models of biological networks

Knowledge

a

b c

+ +

-- +

+ Semantics

Ordinary differential equations
da
dt

= −kdaa

db
dt

=
kaba

1+ kaba
1

1+ kbbb
− kdbb

dc
dt

= (
kaca

1+ kaca
kccc

1+ kccc
+)

1
1+ kbcb

− kdcc

Boolean network

fa(a, b, c) = 0

fb(a, b, c) = a and not b

fc (a, b, c) = not b and (a or c)

Semantics

• Mathematically defines what a state is,

• and how it evolves with time (sequences or chronometry)

• Requires additional parameters, usually not in knowledge
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Causal Analysis in Computational Models of Biological Networks Dynamics: Formal methods

Motivating question
Given a computational model of a network,
how to prove that a behaviour is impossible?

Example: it is impossible to reach the state of interest in the current condition

This question is key for:

• Model verification: do we miss something?

• Control prediction: perturbations which makes a behaviour impossible

Requires a complete assessment of model capabilities:

• simulation

• formal verification

Same principle to prove absence of bugs in computer programs
⇒ similar technologies, very different models.
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Dynamics of Qualitative Networks
Example in Boolean case

a

b c

+ +

-- +

fa(a, b, c) = 0

fb(a, b, c) = a and not b

fc (a, b, c) = not b and (a or c)

State transition graph

〈a, b, c〉 〈1, 0, 0〉

[René Thomas in Journal of Theoritical Biology, 1973] [A. Richard, J.-P. Comet, G.
Bernot in Modern Formal Methods and Applications, 2006]
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Formal Verification of Qualitative Networks

Qualitative models

• Few parameters:
⇒ quite direct translation from knowledge to computational model
⇒ results are general (independant of speed of reactions, precise quantities. . . )

• Not suited for quantitative predictions.

State transition graph

• Allows an exhaustive view of model capabilities;

• Automatic “model checking” w.r.t. specifications.

but. . .

Tractability issues

• Combinatorial explosion of behaviours
networks with 100 to 1,000 nodes: 2100 - 1030 to 21 000 - 10300 states

• Large range of initial conditions to consider.

• Difficult to extract comprehensive proofs of (im)possibility.

⇒ avoid building the state graph! compute something else (abstraction)
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Causal analysis in biological networks

What are the minimal causes for the changes of node states?

Reason locally, i.e., only on direct regulators of the node
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Local Causality Graph

• Initial state s0 = {a 7→ 0; b 7→ 0; c 7→ 0; d 7→ 0}.

c1

c0 c1

a1b0

a0 a1

d0d0 d0b0 b0

d1

d0 d1
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Local Causality Graph

• Initial state s0 = {a 7→ 0; b 7→ 0; c 7→ 0; d 7→ 0}.

c1

c0 c1

a1b0

a0 a1

d0d0 d0b0 b0

d1

d0 d1

Computed automatically from formal models of networks

Size: Polynomial(nb. nodes); Exp(nb qualitative levels)
Compared to Exp(nb. nodes) for state transition graph

⇒ highly tractable for large qualitative networks
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Reasonning on Local Causality Graph

• Initial state s0 = {a 7→ 0; b 7→ 0; c 7→ 0; d 7→ 0}.

c1

c0 c1

a1b0

a0 a1

d0d0 d0b0 b0

d1

d0 d1

∅
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Causal analysis for transient reachability

initial state(s) goal state(s) initial state(s) goal state(s)

initial state(s) goal state(s)

reachability cut sets

mutations bifurcations

initial state(s) goal state(s)

{a=0,b=1}

c 0 -> 1 when b=1

c 0 -> 1 when b=1

KO b
(lock b=0)

Software Pint - http://loicpauleve.name/pint (python interface)
Scalability: networks with 100 - 10,000 components
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Example: Cell cycle control by RB/E2F
Model from Calzone et al, Mol Syst Biol. 2008
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Example: Cell cycle control by RB/E2F
Joint work with A. Rougny and C. Froidevaux

Checking the sequence of phases

• Are all phases reachable from G0?

• Are phase n markers cut sets for reaching phase n + 1?

G0 S

 G1 markers
(E2F1+DP1+RB)

Results of formal analysis
Model: ≈ 300 components, i.e., ≈ 2300 states. . . tractable only with causal analysis!

• The original map does not enforce the sequence of phases

• ⇒ can be fixed by narrowing (known) transcriptional effects of E2F1

Loïc Paulevé 18/23



Causal Analysis in Computational Models of Biological Networks Dynamics: Examples of applications

Example: mutations preventing apoptosis
Model from Cohen et al, Plos Comp Bio 2015
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Example: mutations preventing apoptosis
WiP w/ L. Calzone and A. Zinovyev

Formal computation of mutations which disable apopotosis

initial state(s) goal state(s) initial state(s) goal state(s)

initial state(s) goal state(s)

reachability cut sets

mutations bifurcations

initial state(s) goal state(s)

{a=0,b=1}

c 0 -> 1 when b=1

c 0 -> 1 when b=1

KO b
(lock b=0)

Causal analysis allows very efficient identification of mutations for reachability control

On-going work: compute temporal mutations, i.e., sequence of mutations in time.

Loïc Paulevé 20/23



Causal Analysis in Computational Models of Biological Networks Dynamics: Examples of applications

Example: mutations preventing apoptosis
WiP w/ L. Calzone and A. Zinovyev

Formal computation of mutations which disable apopotosis

Causal analysis allows very efficient identification of mutations for reachability control

On-going work: compute temporal mutations, i.e., sequence of mutations in time.

Loïc Paulevé 20/23



Causal Analysis in Computational Models of Biological Networks Dynamics

Outline

1 Formal methods for biological networks

2 Causal analysis
Local Causality Graph
Overview of features

3 Examples of applications

4 Discussion

Loïc Paulevé 21/23



Causal Analysis in Computational Models of Biological Networks Dynamics

Conclusion

Qualitative modeling

• Short path between knowledge and executable model

• Limit arbitrary/unobservable parameters

Modelling causality of state changes

• Efficient algorithms for automatic reasonning
• Formal analysis of trajectories:

• disprove a model
• predict mutations to control the system

• Allow incomplete knowledge

Examples of directions

• Model identification: simplest models matching data and prior knowledge,

• Take into account time scales

• Algorithm for control of networks dynamics
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Formal Methods for Systems Biology

Aim: understand, analyse, control emerging dynamics.

Data
Literature
Experiments
Hypotheses

Model
Interaction network

Formal verification
- exhaustive analysis
- strong generalization
(abstractions)
- proof of impossibility
⇒ necessary conditions

Emerging behaviours

reconstruction

dynamical interpretation

New hypotheses

- crucial interactions
- potential targets for
control

validation

m
od
ifi
ca
tio

ns

prediction
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