Causal Analysis in Computational Models of Biological Networks Dynamics

Loïc Paulevé

CNRS/LRI, Univ. Paris-Sud, Univ. Paris-Saclay - BioInfo team loic.pauleve@lri.fr http://loicpauleve.name

IBV - 19 May 2017

Self-introduction

CNRS Researcher in computer science lab at Univ Paris-Sud

PhD from Ecole Centrale de Nantes on computational systems biology

Research topic Methods for automatic reasoning on large biological networks

From computer science to biology

- ANR HyClock (F. Delaunay): analysing detailed models of circadian clock and cell cycle.
- Starting project: ANR-FNR AlgoReCell on models and algorithms for cellular reprogramming inc. wet lab experiments (partners: Curie; Inria; Univ of Luxembourg).

Causal Analysis in Computational Models of Biological Networks Dynamics

Cellular Dynamics

Initial state(s)/Goal state(s)

Causal Analysis in Computational Models of Biological Networks Dynamics

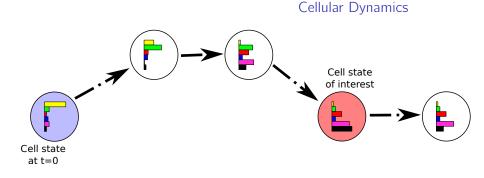
Cell state at t=0

Cellular Dynamics

Initial state(s)/Goal state(s)

• Trajectory existence (reachability)

Causal Analysis in Computational Models of Biological Networks Dynamics



Initial state(s)/Goal state(s)

• Trajectory existence (reachability)

Cell state of interest Cell state at t=0

Cellular Dynamics

Initial state(s)/Goal state(s)

- Trajectory existence (reachability)
- Reasoning on all trajectories: e.g., common features
- Control: perturbations to avoid/enforce goal reachability

Outline

1 Formal methods for biological networks

2 Causal analysis Local Causality Graph Overview of features

3 Examples of applications

Outline

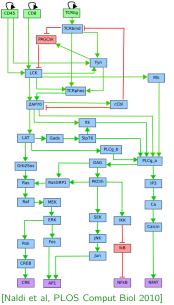
1 Formal methods for biological networks

2 Causal analysis Local Causality Graph Overview of features

8 Examples of applications

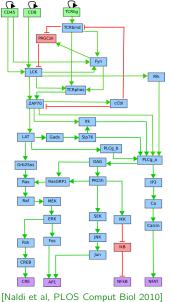
4 Discussion

Computational models of biological networks



Network: account for **indirect influences** between **entities** of a system

Computational models of biological networks

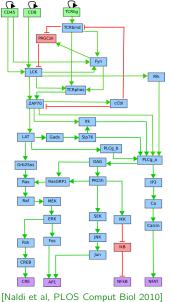


Network: account for **indirect influences** between **entities** of a system

A biological model is typically built from

- literature (tedious)
- (curated) databases: pull interactions discovered in very different experimental settings
- network inference from data: prune networks to fit with data; identify new interactions
- expert knowledge (people)

Computational models of biological networks

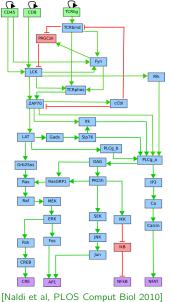


Network: account for **indirect influences** between **entities** of a system

A biological model is typically built from

- literature (tedious)
- (curated) databases: pull interactions discovered in very different experimental settings
- network inference from data: prune networks to fit with data; identify new interactions
- expert knowledge (people)
- \Rightarrow uncertainties / hypotheses remain
- \Rightarrow set of candidate models

Computational models of biological networks



Network: account for **indirect influences** between **entities** of a system

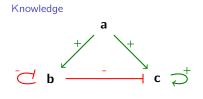
A biological model is typically built from

- literature (tedious)
- (curated) databases: pull interactions discovered in very different experimental settings
- network inference from data: prune networks to fit with data; identify new interactions
- expert knowledge (people)
- \Rightarrow uncertainties / hypotheses remain
- \Rightarrow set of candidate models

Need for efficient methods to

- discriminate, refine candidate models
- predictions robust to model uncertainties.

Computational models of biological networks



+ Semantics

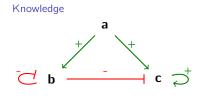
Ordinary differential equations $\begin{aligned} \frac{da}{dt} &= -k_{da}a \\ \frac{db}{dt} &= \frac{k_{ab}a}{1+k_{ab}a} \frac{1}{1+k_{bb}b} - k_{db}b \\ \frac{dc}{dt} &= (\frac{k_{ac}a}{1+k_{ac}a} \frac{k_{cc}c}{1+k_{cc}c} +) \frac{1}{1+k_{bc}b} - k_{dc}c \end{aligned}$

Boolean network $f_a(a, b, c) = 0$ $f_b(a, b, c) = a$ and not b $f_c(a, b, c) =$ not b and (a or c)

Semantics

- Mathematically defines what a state is,
- and how it evolves with time (sequences or chronometry)
- Requires additional parameters, usually not in knowledge

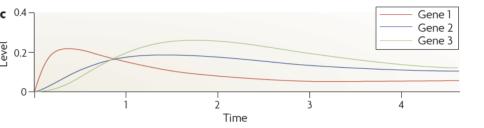
Computational models of biological networks



+ Semantics

Ordinary differential equations

$$\begin{aligned} \frac{da}{dt} &= -k_{da}a\\ \frac{db}{dt} &= \frac{k_{ab}a}{1+k_{ab}a} \frac{1}{1+k_{bb}b} - k_{db}b\\ \frac{dc}{dt} &= \left(\frac{k_{ac}a}{1+k_{ac}a} \frac{k_{cc}c}{1+k_{cc}c} +\right) \frac{1}{1+k_{bc}b} - k_{dc}c \end{aligned}$$



Motivating question

Given a computational model of a network, how to prove that a behaviour is impossible?

Example: it is impossible to reach the state of interest in the current condition

This question is key for:

- Model verification: do we miss something?
- Control prediction: perturbations which makes a behaviour impossible

Motivating question

Given a computational model of a network, how to prove that a behaviour is impossible?

Example: it is impossible to reach the state of interest in the current condition

This question is key for:

- Model verification: do we miss something?
- Control prediction: perturbations which makes a behaviour impossible

Requires a complete assessment of model capabilities:

- simulation
- formal verification

Motivating question

Given a computational model of a network, how to prove that a behaviour is impossible?

Example: it is impossible to reach the state of interest in the current condition

This question is key for:

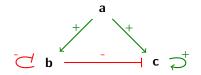
- Model verification: do we miss something?
- Control prediction: perturbations which makes a behaviour impossible

Requires a complete assessment of model capabilities:

- simulation
- formal verification

Same principle to prove absence of bugs in computer programs \Rightarrow similar technologies, very different models.

Dynamics of Qualitative Networks Example in Boolean case



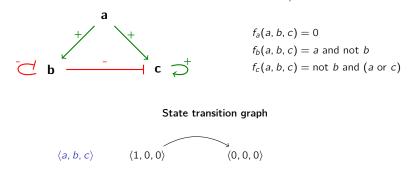
 $f_a(a, b, c) = 0$ $f_b(a, b, c) = a \text{ and not } b$ $f_c(a, b, c) = \text{not } b \text{ and } (a \text{ or } c)$

State transition graph

 $\langle a, b, c \rangle$ $\langle 1, 0, 0 \rangle$

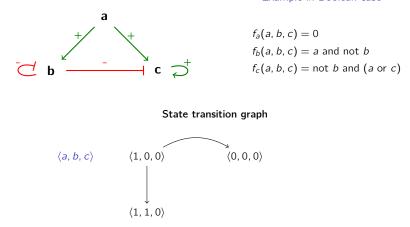
[René Thomas in Journal of Theoritical Biology, 1973] [A. Richard, J.-P. Comet, G. Bernot in Modern Formal Methods and Applications, 2006]

Dynamics of Qualitative Networks Example in Boolean case



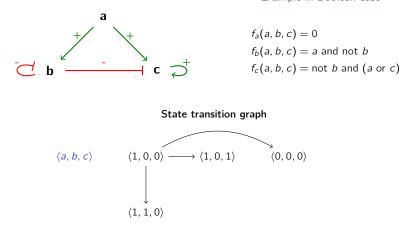
[René Thomas in Journal of Theoritical Biology, 1973] [A. Richard, J.-P. Comet, G. Bernot in Modern Formal Methods and Applications, 2006]

Dynamics of Qualitative Networks Example in Boolean case



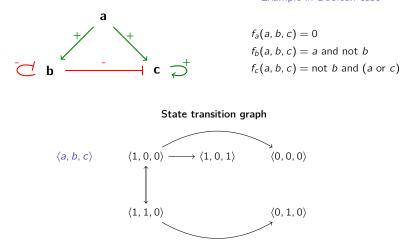
[René Thomas in Journal of Theoritical Biology, 1973] [A. Richard, J.-P. Comet, G. Bernot in Modern Formal Methods and Applications, 2006]

Dynamics of Qualitative Networks Example in Boolean case



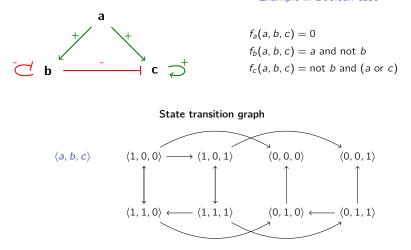
[René Thomas in Journal of Theoritical Biology, 1973] [A. Richard, J.-P. Comet, G. Bernot in Modern Formal Methods and Applications, 2006]

Dynamics of Qualitative Networks Example in Boolean case



[René Thomas in Journal of Theoritical Biology, 1973] [A. Richard, J.-P. Comet, G. Bernot in Modern Formal Methods and Applications, 2006]

Dynamics of Qualitative Networks Example in Boolean case



[René Thomas in Journal of Theoritical Biology, 1973] [A. Richard, J.-P. Comet, G. Bernot in Modern Formal Methods and Applications, 2006]

Qualitative models

- Few parameters:
 - \Rightarrow quite direct translation from knowledge to computational model
 - \Rightarrow results are general (independant of speed of reactions, precise quantities...)
- Not suited for quantitative predictions.

Qualitative models

- Few parameters:
 - \Rightarrow quite direct translation from knowledge to computational model
 - \Rightarrow results are general (independant of speed of reactions, precise quantities...)
- Not suited for quantitative predictions.

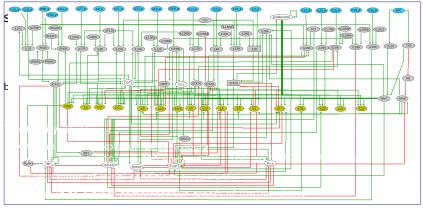
State transition graph

- Allows an exhaustive view of model capabilities;
- Automatic "model checking" w.r.t. specifications.

but...

Qualitative models

- Few parameters:
 - \Rightarrow quite direct translation from knowledge to computational model
 - \Rightarrow results are general (independant of speed of reactions, precise quantities...)
- Not suited for quantitative predictions.



Qualitative models

- Few parameters:
 - \Rightarrow quite direct translation from knowledge to computational model
 - \Rightarrow results are general (independant of speed of reactions, precise quantities...)
- Not suited for quantitative predictions.

State transition graph

- Allows an exhaustive view of model capabilities;
- Automatic "model checking" w.r.t. specifications.

but...

Tractability issues

- Combinatorial explosion of behaviours networks with 100 to 1,000 nodes: 2^{100} 10^{30} to 2^{1000} 10^{300} states
- Large range of initial conditions to consider.
- Difficult to extract comprehensive proofs of (im)possibility.

Qualitative models

- Few parameters:
 - \Rightarrow quite direct translation from knowledge to computational model
 - \Rightarrow results are general (independant of speed of reactions, precise quantities...)
- Not suited for quantitative predictions.

State transition graph

- Allows an exhaustive view of model capabilities;
- Automatic "model checking" w.r.t. specifications.

but...

Tractability issues

- Combinatorial explosion of behaviours networks with 100 to 1,000 nodes: 2^{100} 10^{30} to 2^{1000} 10^{300} states
- Large range of initial conditions to consider.
- Difficult to extract comprehensive proofs of (im)possibility.

\Rightarrow avoid building the state graph! compute something else (abstraction)

Outline

1 Formal methods for biological networks

2 Causal analysis Local Causality Graph Overview of features

8 Examples of applications

4 Discussion

Causal analysis in biological networks

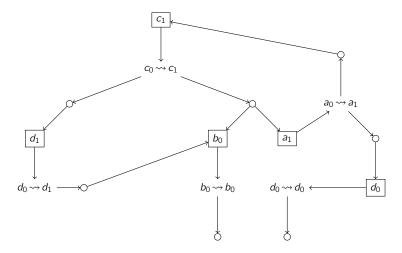
What are the minimal causes for the changes of node states?

Causal analysis in biological networks

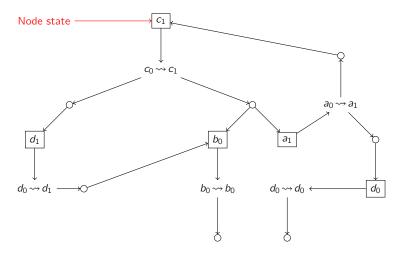
What are the minimal causes for the changes of node states?

Reason locally, i.e., only on direct regulators of the node

Local Causality Graph



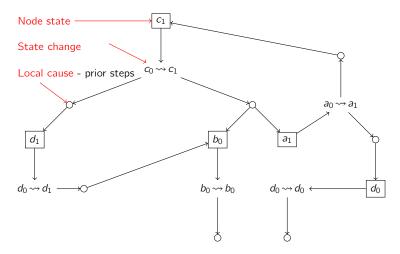
Local Causality Graph



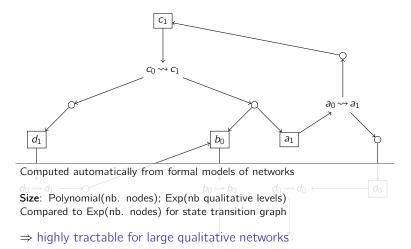
Local Causality Graph



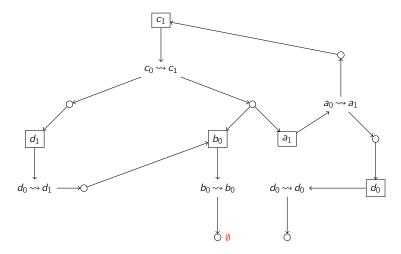
Local Causality Graph



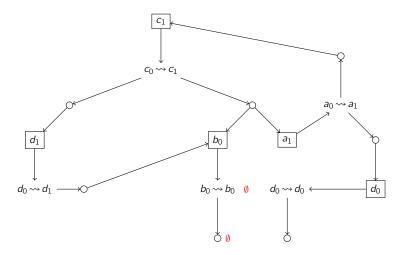
Local Causality Graph



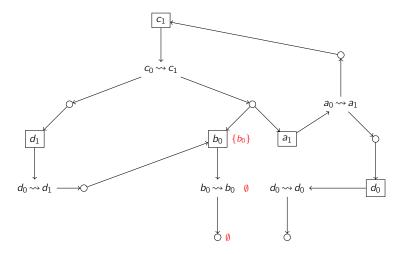
Reasonning on Local Causality Graph



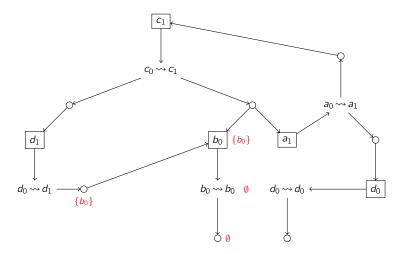
Reasonning on Local Causality Graph



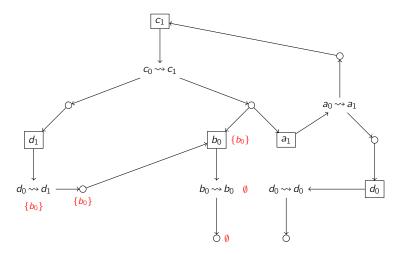
Reasonning on Local Causality Graph



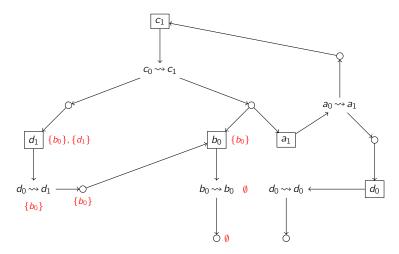
Reasonning on Local Causality Graph



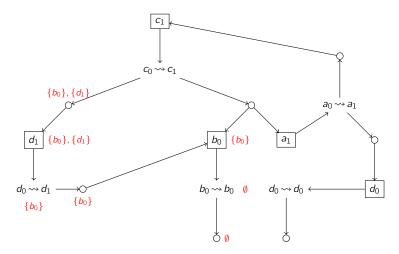
Reasonning on Local Causality Graph



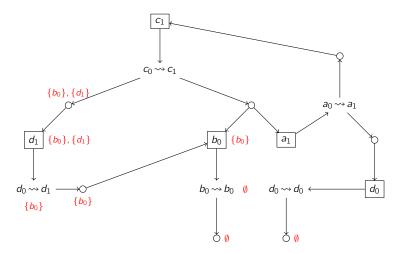
Reasonning on Local Causality Graph



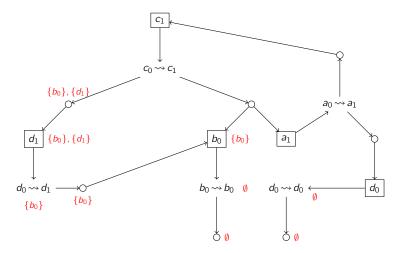
Reasonning on Local Causality Graph



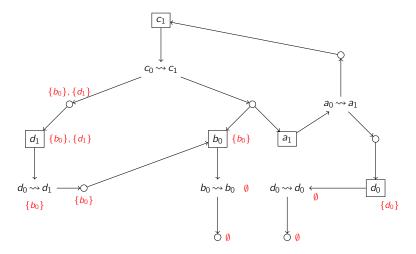
Reasonning on Local Causality Graph



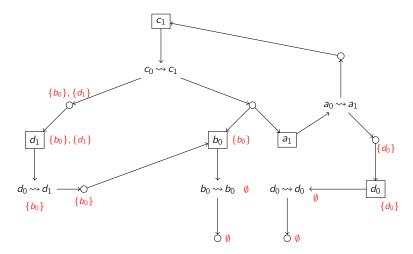
Reasonning on Local Causality Graph



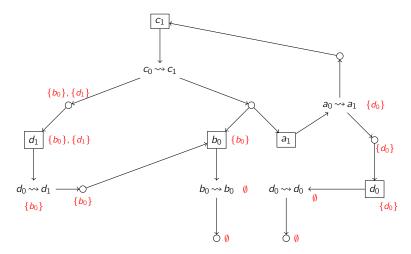
Reasonning on Local Causality Graph



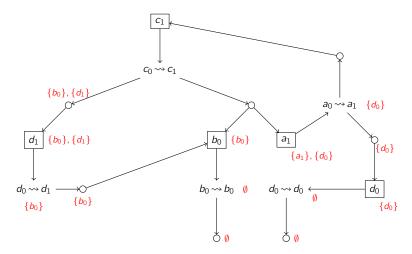
Reasonning on Local Causality Graph



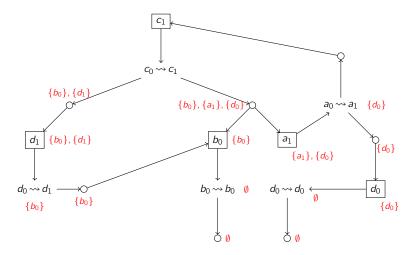
Reasonning on Local Causality Graph



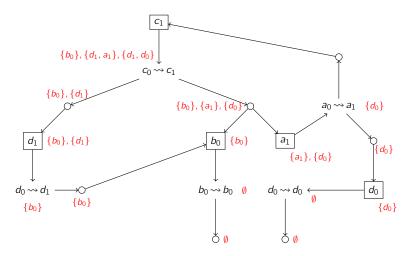
Reasonning on Local Causality Graph



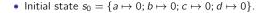
Reasonning on Local Causality Graph

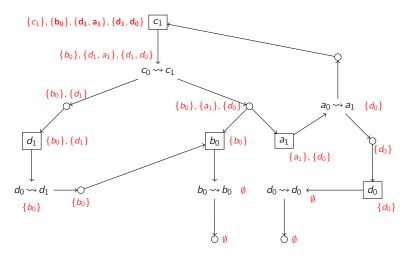


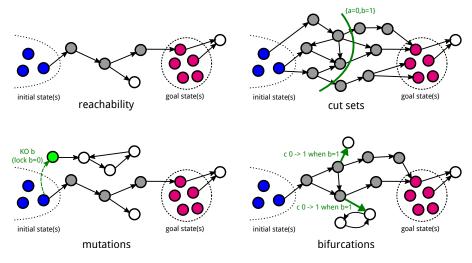
Reasonning on Local Causality Graph



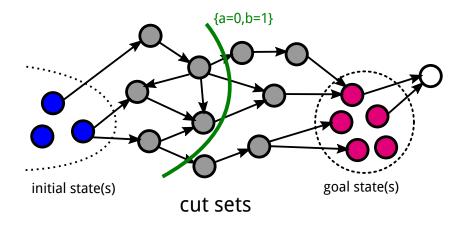
Reasonning on Local Causality Graph

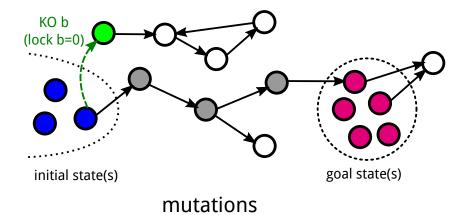


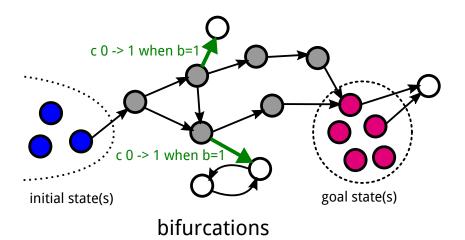


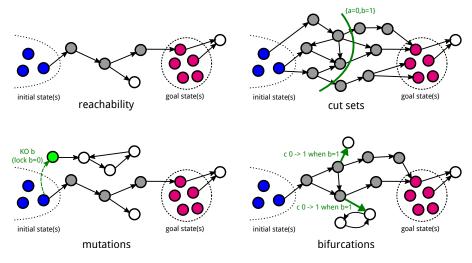


Software Pint - http://loicpauleve.name/pint (python interface) Scalability: networks with 100 - 10,000 components









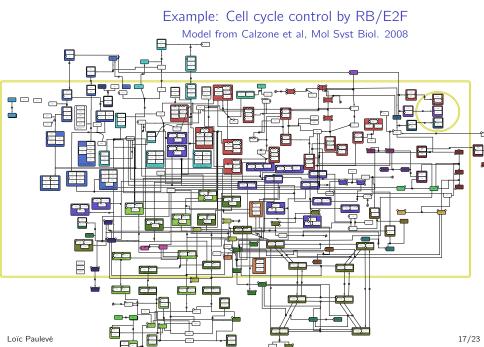
Software Pint - http://loicpauleve.name/pint (python interface) Scalability: networks with 100 - 10,000 components

Outline

1 Formal methods for biological networks

2 Causal analysis Local Causality Graph Overview of features

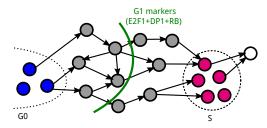
3 Examples of applications



Example: Cell cycle control by RB/E2F Joint work with A. Rougny and C. Froidevaux

Checking the sequence of phases

- Are all phases reachable from G0?
- Are phase n markers cut sets for reaching phase n + 1?



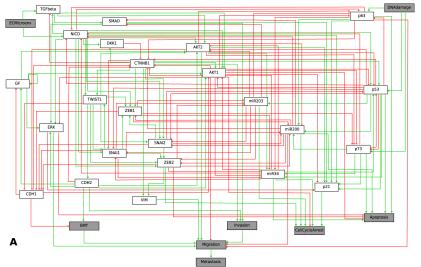
Results of formal analysis

Model: \approx 300 components, i.e., $\approx 2^{300}$ states... tractable only with causal analysis!

- The original map does not enforce the sequence of phases
- \Rightarrow can be fixed by narrowing (known) transcriptional effects of E2F1

Example: mutations preventing apoptosis

Model from Cohen et al, Plos Comp Bio 2015



Example: mutations preventing apoptosis WiP w/ L. Calzone and A. Zinovyev

KO b (lock b=0)

Formal computation of mutations which disable apopotosis

initial state(s)

goal state(s)

mutations

Causal analysis allows very efficient identification of mutations for reachability control

On-going work: compute temporal mutations, i.e., sequence of mutations in time.

Example: mutations preventing apoptosis WiP w/ L. Calzone and A. Zinovyev

Formal computation of mutations which disable apopotosis

```
In [10]: wtmodel = pypint.load("http://ginsim.org/sites/default/files/SuppMat_Model_Master_Model.zginml")
    m = wtmodel.having(ECMicroenv=1,DNAdamage=0)
    m.oneshot_mutations_for_cut(Goal("Apoptosis=1")|Goal("CellCycleArrest=1"),maxsize=3,exclude={"ECMico"
```

This computation is an under-approximation: returned mutations are all valid, but they may be non-minimal, and some solutions may be

Limiting solutions to mutations of at most 3 automata. Use maxsize argument to change.

```
# Running command pint-reach --json-stdout Apoptosis=1 or CellCycleArrest=1 --oneshot-mutations-for
utomata CellCycleArrest,Apoptosis,ECMicroenv -i wt.an --initial-context "ECMicroenv"=1
```

```
Out[10]: [{'AKT1': 1},
	{'CDH1': 1, 'NICD': 0},
	{'CTNB1': 0, 'NICD': 0},
	{'DKK1': 1, 'NICD': 0},
	{'DKK1': 1, 'NICD': 0},
	{'AKT2': 1, 'ERK': 1, 'ZEB2': 0},
	{'AKT2': 1, 'ZEB2': 0, 'p21': 0},
	{'ERK': 1, 'SNAI1': 1, 'ZEB2': 0},
	{'ERK': 1, 'SNAI1': 1, 'ZEB2': 0},
	{'ERK': 1, 'SNAI1': 1, 'ZEB2': 0},
```

Causal analysis allows very efficient identification of mutations for reachability control

On-going work: compute temporal mutations, i.e., sequence of mutations in time.

Outline

1 Formal methods for biological networks

2 Causal analysis Local Causality Graph Overview of features

8 Examples of applications

Conclusion

Qualitative modeling

- Short path between knowledge and executable model
- Limit arbitrary/unobservable parameters

Modelling causality of state changes

- Efficient algorithms for automatic reasonning
- Formal analysis of trajectories:
 - · disprove a model
 - predict mutations to control the system
- Allow incomplete knowledge

Examples of directions

- Model identification: simplest models matching data and prior knowledge,
- Take into account time scales
- Algorithm for control of networks dynamics

Formal Methods for Systems Biology

Aim: understand, analyse, control emerging dynamics.

