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Cellular Dynamics
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Initial state(s)/Goal state(s)
e Trajectory existence (reachability)
e Reasoning on all trajectories : e.g., common features

e Control : perturbations to avoid/enforce goal reachability
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Signalling and gene networks

Prediction
e Cell response w.r.t. signal+environment

e Long-term behaviours (differentiation)

Control

e Mutations/Perturbations for modifying
cell behaviour

e Trans/De-differentiation
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Computational models of biological networks
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[Naldi et al, PLOS Comput Biol 2010]
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Computational models of biological networks
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] — Network : account for indirect influences between
entities of a system

A biological model is typically built from

e literature (tedious)

o (curated) databases : pull interactions
discovered in very different experimental
settings

e network inference from data : prune networks
A . . . . . .
X to fit with data; identify new interactions

e expert knowledge (people)
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Computational models of biological networks

O (3
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] — Network : account for indirect influences between
entities of a system

A biological model is typically built from

e literature (tedious)

o (curated) databases : pull interactions
discovered in very different experimental
settings

e network inference from data : prune networks
to fit with data; identify new interactions

e expert knowledge (people)

= uncertainties / hypotheses remain
= set of candidate models

A Need for efficient methods to

e discriminate, refine candidate models

e predictions robust to model uncertainties.

[Naldi et al, PLOS Comput Biol 2010]
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Computational models of biological networks

Knowledge

A

b ——— <D

Semantics

e Mathematically defines what a state is,

+ Semantics

Ordinary differential equations

da

E = —kgaa

db k. 1

= _ _Kapa L+ Kapb

dt 1+ kapa 1+ kppb

d k. k 1

C 7( acd ccC +) — ke

dt ‘14 keea 1+ keeC ' 1+ kpeb

Boolean network
fa(a, b,c) =0
fp(a, b, c) = a and not b
fe(a, b, c) = not b and (a or c)

e and how it evolves with time (sequences or chronometry)

e Requires additional parameters, usually not in knowledge
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Motivating question

Given a computational model of a network,
how to prove that a behaviour is impossible ?

Example : it is impossible to reach the state of interest in the current condition

This question is key for :
e Model verification : do we miss something ?
e Model identification : filter valid candidate models

e Control prediction : perturbations which makes a behaviour impossible
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Motivating question

Given a computational model of a network,
how to prove that a behaviour is impossible ?

Example : it is impossible to reach the state of interest in the current condition

This question is key for :
e Model verification : do we miss something ?
e Model identification : filter valid candidate models

e Control prediction : perturbations which makes a behaviour impossible

Requires a complete assessment of model capabilities :
o o .
e formal verification

Same principle to prove absence of bugs in computer programs
= similar technologies, different models.
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Dynamics of Qualitative Networks
Example in Boolean case

fa(a, b,c) =0
fy(a, b,c) = aand not b
_Cj b —| c fe(a, b, ¢) =not b and (a or c)

State transition graph

(a, b, c) (1,0,0)

[René Thomas in Journal of Theoritical Biology, 1973] [A. Richard, J.-P. Comet, G.
Bernot in Modern Formal Methods and Applications, 2006]
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Formal methods for dynamics of biological networks: Formal methods
Formal Verification of Qualitative Networks

Qualitative models
e Focus on causality of state changes

e Few parameters :
= quite direct translation from knowledge to computational model
= results are general (independant of speed of reactions, precise quantities. . .)

e Not suited for quantitative predictions.
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State transition graph
e Allows an exhaustive view of model capabilities;

e Automatic “model checking” w.r.t. specifications.

but. ..
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Formal Verification of Qualitative Networks

Qualitative models
e Focus on causality of state changes

e Few parameters :
= quite direct translation from knowledge to computational model
= results are general (independant of speed of reactions, precise quantities. . .)

e Not suited for quantitative predictions.

State transition graph
e Allows an exhaustive view of model capabilities;

e Automatic “model checking” w.r.t. specifications.

but. ..

Tractability issues (reachability is PSPACE-complete)

e Combinatorial explosion of behaviours
networks with 100 to 1,000 nodes : 2100 _ 1030 to 21000 _ 10300 gtates

e Large range of initial conditions to consider.

e Difficult to extract comprehensive proofs of (im)possibility.
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Formal methods for dynamics of biological networks: Approach

Abstractions for transient dynamics of Boolean Networks

Intuition : exploit the low scope of transitions (concurrency)
e Static analysis by abstract interpretation [Cousot and Cousot 77]
e Intermediate representation (Local Causality Graph)
e Gives necessary/sufficient conditions for reachability

e Implementation in SAT /Answer-Set Programming (ASP)

= Approx. of PSPACE problems with P.e? or NP.e? problems
where d is the in-degree of nodes in the Boolean network
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Causal analysis for transient reachability

initial state(s) - goal state(s) initial state(s) goal state(s)
reachability cut sets

( Kl?bb O)W €0->1when b=1
[o]d =
o . )y e oY N N

" c0->1when b=1

initial state(s) goal state(s) initial state(s)

mutations bifurcations

Software Pint - http://loicpauleve.name/pint
Scalability : networks with 100 - 10,000 components
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Causal analysis for transient reachability

KO b
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Causal analysis for transient reachability
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Formal methods for dynamics of biological networks: Examples of applications

Example : Cell cycle control by RB/E2F
Model from Calzone et al, Mol Syst Biol. 2008
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Example : Cell cycle control by RB/E2F
Joint work with A. Rougny and C. Froidevaux

Checking the sequence of phases
e Are all phases reachable from GO 7

e Are phase n markers cut sets for reaching phase n 417

G1 markers
(E2F1+DP1+RB)

Results of formal analysis
Model : &~ 300 components, i.e., & 2390 states. . . tractable only with causal analysis !

e The original map does not enforce the sequence of phases

e = can be fixed by narrowing (known) transcriptional effects of E2F1
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Formal methods for dynamics of biological networks: Examples of applications

Example : mutations preventing apoptosis
Model from Cohen et al, Plos Comp Bio 2015
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Formal methods for dynamics of biological networks: Examples of applications

Example : mutations preventing apoptosis
WiP w/ L. Calzone and A. Zinovyev

Formal computation of mutations which disable apopotosis
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Causal analysis allows very efficient identification of mutations for reachability control

On-going work : compute temporal mutations, i.e., sequence of mutations in time.
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Example : model identification
w/ Anne Siegel, Carito Guziolowski, Max Ostrowski

Prior Knowledge Network (PKN) Perturbation Time Series Data
(over-approx of causal network) W.T. : Cf D’
D > i
Gl x X : XX % XX
A QJ'x x X'x i|x *
T X t . % t
() : :
a X ' X
! X
B z XD XXy t

X X
/ —

C
e |dentify all compatible Boolean network models

e Relies on Answer-Set Programming and approximations of reachability

Caspo-TS - http://github. com/pauleve/caspots
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Conclusion

Qualitative modeling
e Short path between knowledge and executable model

e Limit arbitrary/unobservable parameters

Formal analysis for models
e Validate/refute a model
e Applications : model identification, control prediction

e Efficient algorithms for automatic reasonning

Major challenge : deal with huge number of candidate models
e network inference lead to many networks, equivalent w.r.t. available data
e most methods take as input a single model. ..

e how to make convincing predictions ? (model counting. . .)
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