Méthodes formelles pour l'étude de la dynamique des réseaux biologiques

Loïc Paulevé

CNRS/LRI, Univ. Paris-Sud, Univ. Paris-Saclay - BioInfo team loic.pauleve@lri.fr http://loicpauleve.name

Journées GdR BiM - 14 Novembre 2017

Cellular Dynamics

Cell state of interest

Initial state(s)/Goal state(s)

Initial state(s)/Goal state(s)

• Trajectory existence (reachability)

Initial state(s)/Goal state(s)

• Trajectory existence (reachability)

Cellular Dynamics Cell state of interest Cell state at t=0

Initial state(s)/Goal state(s)

- Trajectory existence (reachability)
- Reasoning on all trajectories : e.g., common features
- Control : perturbations to avoid/enforce goal reachability

Signalling and gene networks

Prediction

- Cell response w.r.t. signal+environment
- Long-term behaviours (differentiation)

Control

- Mutations/Perturbations for modifying cell behaviour
- Trans/De-differentiation

Signalling and gene networks

Prediction

- Cell response w.r.t. signal+environment
- Long-term behaviours (differentiation)

Control

- Mutations/Perturbations for modifying cell behaviour
- Trans/De-differentiation

Computational models of dynamics

- —Formal verification —Automatic reasoning

CD45 CD8 TCRbind PAGCsk Fyr LCK Rik TCRphos cCbl ZAP70 Itk Slp76 LAT Gads PLCg_b PLCg_a DAG Grb2Sos RasGRP1 PKCth Ras IP3 Raf MEK Ca SEK ERK IKK Calcin JNK Fos Rsk IkB Jun CREB AP1 NFAT CRE NFkB

Computational models of biological networks

Network : account for **indirect influences** between **entities** of a system

[Naldi et al, PLOS Comput Biol 2010]

Computational models of biological networks

Network : account for **indirect influences** between **entities** of a system

A biological model is typically built from

- literature (tedious)
- (curated) databases : pull interactions discovered in very different experimental settings
- network inference from data : prune networks to fit with data; identify new interactions
- expert knowledge (people)

[Naldi et al, PLOS Comput Biol 2010]

Computational models of biological networks

Network : account for **indirect influences** between **entities** of a system

A biological model is typically built from

- literature (tedious)
- (curated) databases : pull interactions discovered in very different experimental settings
- network inference from data : prune networks to fit with data; identify new interactions
- expert knowledge (people)
- \Rightarrow uncertainties / hypotheses remain
- \Rightarrow set of candidate models

[Naldi et al, PLOS Comput Biol 2010]

Computational models of biological networks

Network : account for **indirect influences** between **entities** of a system

A biological model is typically built from

- literature (tedious)
- (curated) databases : pull interactions discovered in very different experimental settings
- network inference from data : prune networks to fit with data ; identify new interactions
- expert knowledge (people)
- \Rightarrow uncertainties / hypotheses remain
- \Rightarrow set of candidate models

Need for efficient methods to

- discriminate, refine candidate models
- predictions robust to model uncertainties.

Computational models of biological networks

+ Semantics

Ordinary differential equations $\begin{aligned}
\frac{da}{dt} &= -k_{da}a \\
\frac{db}{dt} &= \frac{k_{ab}a}{1+k_{ab}a} \frac{1}{1+k_{bb}b} - k_{db}b \\
\frac{dc}{dt} &= \left(\frac{k_{ac}a}{1+k_{ac}a} \frac{k_{cc}c}{1+k_{cc}c} +\right) \frac{1}{1+k_{bc}b} - k_{dc}c
\end{aligned}$

Boolean network $f_a(a, b, c) = 0$ $f_b(a, b, c) = a$ and not b $f_c(a, b, c) =$ not b and (a or c)

Semantics

- Mathematically defines what a state is,
- and how it evolves with time (sequences or chronometry)
- Requires additional parameters, usually not in knowledge

Motivating question

Given a computational model of a network, how to prove that a behaviour is impossible?

Example : it is impossible to reach the state of interest in the current condition

This question is key for :

- Model verification : do we miss something?
- Model identification : filter valid candidate models
- Control prediction : perturbations which makes a behaviour impossible

Motivating question

Given a computational model of a network, how to prove that a behaviour is impossible?

Example : it is impossible to reach the state of interest in the current condition

This question is key for :

- Model verification : do we miss something?
- Model identification : filter valid candidate models
- Control prediction : perturbations which makes a behaviour impossible

Requires a complete assessment of model capabilities :

- simulation
- formal verification

Motivating question

Given a computational model of a network, how to prove that a behaviour is impossible?

Example : it is impossible to reach the state of interest in the current condition

This question is key for :

- Model verification : do we miss something?
- Model identification : filter valid candidate models
- Control prediction : perturbations which makes a behaviour impossible

Requires a complete assessment of model capabilities :

- simulation
- formal verification

Same principle to prove absence of bugs in computer programs \Rightarrow similar technologies, different models.

Dynamics of Qualitative Networks Example in Boolean case

 $f_a(a, b, c) = 0$ $f_b(a, b, c) = a \text{ and not } b$ $f_c(a, b, c) = \text{not } b \text{ and } (a \text{ or } c)$

State transition graph

 $\langle a, b, c \rangle$ $\langle 1, 0, 0 \rangle$

[René Thomas in Journal of Theoritical Biology, 1973] [A. Richard, J.-P. Comet, G. Bernot in Modern Formal Methods and Applications, 2006]

Dynamics of Qualitative Networks Example in Boolean case

[René Thomas in Journal of Theoritical Biology, 1973] [A. Richard, J.-P. Comet, G. Bernot in Modern Formal Methods and Applications, 2006]

Dynamics of Qualitative Networks Example in Boolean case

[René Thomas in Journal of Theoritical Biology, 1973] [A. Richard, J.-P. Comet, G. Bernot in Modern Formal Methods and Applications, 2006]

Dynamics of Qualitative Networks Example in Boolean case

[René Thomas in Journal of Theoritical Biology, 1973] [A. Richard, J.-P. Comet, G. Bernot in Modern Formal Methods and Applications, 2006]

Dynamics of Qualitative Networks Example in Boolean case

[René Thomas in Journal of Theoritical Biology, 1973] [A. Richard, J.-P. Comet, G. Bernot in Modern Formal Methods and Applications, 2006]

Dynamics of Qualitative Networks Example in Boolean case

[René Thomas in Journal of Theoritical Biology, 1973] [A. Richard, J.-P. Comet, G. Bernot in Modern Formal Methods and Applications, 2006]

Formal Verification of Qualitative Networks

Qualitative models

- Focus on causality of state changes
- Few parameters :
 - \Rightarrow quite direct translation from knowledge to computational model
 - \Rightarrow results are general (independant of speed of reactions, precise quantities...)
- Not suited for quantitative predictions.

Formal Verification of Qualitative Networks

Qualitative models

- Focus on causality of state changes
- Few parameters :
 - \Rightarrow quite direct translation from knowledge to computational model
 - \Rightarrow results are general (independant of speed of reactions, precise quantities...)
- Not suited for quantitative predictions.

State transition graph

- Allows an exhaustive view of model capabilities;
- Automatic "model checking" w.r.t. specifications.

but...

Formal Verification of Qualitative Networks

Qualitative models

- Focus on causality of state changes
- Few parameters :
 - \Rightarrow quite direct translation from knowledge to computational model
 - \Rightarrow results are general (independant of speed of reactions, precise quantities...)
- Not suited for quantitative predictions.

State transition graph

- Allows an exhaustive view of model capabilities;
- Automatic "model checking" w.r.t. specifications.

but...

Tractability issues (reachability is PSPACE-complete)

- Combinatorial explosion of behaviours networks with 100 to 1,000 nodes : 2^{100} 10^{30} to 2^{1000} 10^{300} states
- Large range of initial conditions to consider.
- Difficult to extract comprehensive proofs of (im)possibility.

Abstractions for transient dynamics of Boolean Networks

Intuition : exploit the low scope of transitions (concurrency)

- Static analysis by abstract interpretation [Cousot and Cousot 77]
- Intermediate representation (Local Causality Graph)
- Gives necessary/sufficient conditions for reachability
- Implementation in SAT/Answer-Set Programming (ASP)

 \Rightarrow Approx. of PSPACE problems with P. e^d or NP. e^d problems where *d* is the in-degree of nodes in the Boolean network

Causal analysis for transient reachability

Software Pint - http://loicpauleve.name/pint Scalability : networks with 100 - 10,000 components

Causal analysis for transient reachability

Causal analysis for transient reachability

Causal analysis for transient reachability

Causal analysis for transient reachability

Software Pint - http://loicpauleve.name/pint Scalability : networks with 100 - 10,000 components

Example : Cell cycle control by RB/E2F Joint work with A. Rougny and C. Froidevaux

Checking the sequence of phases

- Are all phases reachable from G0?
- Are phase n markers cut sets for reaching phase n + 1?

Results of formal analysis

Model : \approx 300 components, i.e., \approx 2³⁰⁰ states. . . tractable only with causal analysis !

- The original map does not enforce the sequence of phases
- \Rightarrow can be fixed by narrowing (known) transcriptional effects of E2F1

Example : mutations preventing apoptosis

Model from Cohen et al, Plos Comp Bio 2015

Example : mutations preventing apoptosis WiP w/ L. Calzone and A. Zinovyev

KO b (lock b=0)

Formal computation of mutations which disable apopotosis

mutations

Causal analysis allows very efficient identification of mutations for reachability control

On-going work : compute temporal mutations, i.e., sequence of mutations in time.

Example : model identification w/ Anne Siegel, Carito Guziolowski, Max Ostrowski

- Identify all compatible Boolean network models
- Relies on Answer-Set Programming and approximations of reachability

Caspo-TS - http://github.com/pauleve/caspots

Conclusion

Qualitative modeling

- Short path between knowledge and executable model
- Limit arbitrary/unobservable parameters

Formal analysis for models

- Validate/refute a model
- Applications : model identification, control prediction
- Efficient algorithms for automatic reasonning

Major challenge : deal with huge number of candidate models

- network inference lead to many networks, equivalent w.r.t. available data
- most methods take as input a single model...
- how to make convincing predictions? (model counting...)

LRI, Orsay

- Christine Froidevaux
- Adrien Rougny

LSV/Inria Saclay, ENS Cachan

- Stefan Haar
- Thomas Chatain
- Stefan Schwoon
- Hugues Mandon
- Juraj Kolčák

Institut Curie

- Laurence Calzone
- Andrei Zinovyev

Univ. Luxembourg

- Thomas Sauter
- Lasse Sinkonnen
- Julia Becker
- Jun Pang

LCSB, Luxembourg

- Antonio del Sol
- Andras Hartmann
- Andrzej Mizera
- Sacha Zickenrott

Acknowledgements

Masaryk University

• David Šafránek

IRISA, Rennes Dyliss

• Anne Siegel

LS2N, Nantes

- Olivier Roux
- Morgan Magnin
- Carito Guziolowski
- Maxime Folschette
- Louis Fippo Fitime

Funding

