Loïc Paulevé

LRI, CNRS / Université Paris-Sud, Orsay, France — BioInfo team loic.pauleve@lri.fr http://loicpauleve.name

Open University Digicosme - 2016, May 18

Biological networks

Prediction

- Cell response w.r.t. signal+environment
- Long-term behaviours (differentiation)

Control

- Mutations/Perturbations for modifying cell behaviour
- Trans/De-differentiation

Biological networks

Prediction

- Cell response w.r.t. signal+environment
- Long-term behaviours (differentiation)

Control

- Mutations/Perturbations for modifying cell behaviour
- Trans/De-differentiation

Computational models of dynamics

- -Formal verification -Automatic reasoning

Interaction networks E.g., Signalling Networks, Gene Regulatory Networks

Logical models of qualitative dynamics E.g., Boolean networks, Automata networks

Reachability-related properties

Reachability-related properties

Reachability-related properties

Reachability-related properties

Reachability-related properties

Reachability-related properties

Challenges for scalability

Modelling issues

- Partially-specified interactions.
- Boolean networks need to be fully specified (deterministic Boolean function *f_a*).
- Intractable enumeration of all models.

Analysis issues

- Combinatorial explosion of behaviours (e.g. 2¹⁰⁰ - 10³⁰ to 2¹⁰⁰⁰⁰ - 10³⁰⁰⁰ states).
- Reachability is PSPACE-complete
- Large range of control candidate to consider
- Large range of initial conditions to consider

Outline

Static analysis for Automata Networks dynamics

- Dedicated to transient reachability analysis
- Highly scalable
- Correct results (over-/under-approximations)...
- but incomplete.

Menu:

- 1 Local Causality Analysis
- 2 Application to reachability-related properties
- 3 Current/future work

a c 2 2 b_0, a_1 1 .. b_1 c_0 1 · h b_0 b_0 0 1 . 0 . a_2, c_1 an 0

Automata Networks

Automata Networks

Asynchronous semantics (one transition at a time):

 $\langle a_0, b_0, c_0 \rangle$

Automata Networks

$$\begin{array}{c} \langle a_2, b_0, c_0 \rangle \\ \nearrow \\ \langle a_0, b_0, c_0 \rangle \\ \searrow \\ \langle a_1, b_0, c_0 \rangle \end{array}$$

Automata Networks

$$\begin{array}{c} \langle a_2, b_0, c_0 \rangle \longrightarrow \langle a_2, b_0, c_1 \rangle \\ \nearrow \\ \langle a_0, b_0, c_0 \rangle \\ \searrow \\ \langle a_1, b_0, c_0 \rangle \end{array}$$

a С 2 2 b_0, a_1 1 .. c_0 1 . b_1 b_0 b_0 0 1 . 0 . a_2, c_1 an 0

Automata Networks

$$\begin{array}{c} \langle a_2, b_0, c_0 \rangle \longrightarrow \langle a_2, b_0, c_1 \rangle \longrightarrow \langle a_2, b_1, c_1 \rangle \\ \nearrow \\ \langle a_0, b_0, c_0 \rangle \\ \searrow \\ \langle a_1, b_0, c_0 \rangle \end{array}$$

a С 2 2 b_0, a_1 1 .. c_0 1 . b_1 b_0 b_0 0 1 . 0 . a_2, c_1 an 0

Automata Networks

$$\begin{array}{c} \langle a_2, b_0, c_0 \rangle \longrightarrow \langle a_2, b_0, c_1 \rangle \longrightarrow \langle a_2, b_1, c_1 \rangle \longrightarrow \langle a_1, b_1, c_1 \rangle \\ \swarrow \\ \langle a_0, b_0, c_0 \rangle \\ \searrow \\ \langle a_1, b_0, c_0 \rangle \longrightarrow \cdots \end{array}$$

Automata Network modelling of Biological Networks

Transition-centered specification

- .. in opposition to function-centered of Boolean/Thomas networks
- explicit context/causality of state changes
- closely related to (safe) Petri nets
- step semantics (purely async, purely sync, mixed)

Modelling

- any Boolean/Thomas networks can be encoded;
- in case of logical rules uncertainty: model the union of Boolean/Thomas networks (over-approximation of behaviours)
- encoding of SBGN Process Description models [Rougny et al. BMC Systems Biology, in press] (includes reaction networks, e.g., Biocham models).

Tools

- models can be converted from SBML-qual/GINsim using logicalmodel (https://github.com/colomoto/logicalmodel)
- analysis using Pint (http://loicpauleve.name/pint)

Local Causality

$$local-paths(a_0 \rightsquigarrow a_2) = \{a_0 \xrightarrow{b_0} a_1 \xrightarrow{c_1} a_2, \\ a_0 \xrightarrow{b_2} a_2\}$$
$$local-paths^{\#}(a_0 \rightsquigarrow a_2) = \{\{b_0, c_1\}, \{b_2\}\}$$

Local Causality

For any trace π starting at some global state *s* with $a_0 \in s$ and reaching a_2 :

- either $a_0 \xrightarrow{b_0} a_1 \xrightarrow{c_1} a_2$ or $a_0 \xrightarrow{b_2} a_2$ is a sub-trace of π ;
- either b_0 and c_1 , or b_2 are reached before a_2 in π .

Local Causality Graph

Application to reachability

Local causality analysis

• Necessary (OA) or sufficient (UA) conditions

 $\mathsf{UA}(\mathbf{s_0} \rightarrow^* \mathbf{s}) \Rightarrow s_0 \rightarrow^* s \Rightarrow \mathsf{OA}(\mathbf{s_0} \rightarrow^* \mathbf{s})$

- · Model reduction which preserves all minimal traces
- OA: linear with LCG; UA: NP; reduction: linear

Application to reachability

Local causality analysis

• Necessary (OA) or sufficient (UA) conditions

 $\mathsf{UA}(\mathbf{s_0} \rightarrow^* \mathbf{s}) \Rightarrow s_0 \rightarrow^* s \Rightarrow \mathsf{OA}(\mathbf{s_0} \rightarrow^* \mathbf{s})$

- Model reduction which preserves all minimal traces
- OA: linear with LCG; UA: NP; reduction: linear

Necessary conditions for reachability

Example

Necessary condition $OA(s_0 \rightarrow^* d_2)$

There exists a traversal of the LCG s.t.:

- objective → follow at least one solution;
- local state → follow all objectives;
- local path → follow all local states;
- no cycle.

Necessary conditions for reachability

Example

Necessary condition $OA(s_0 \rightarrow^* d_2)$

There exists a traversal of the LCG s.t.:

- objective → follow at least one solution;
- local state → follow all objectives;
- local path → follow all local states;
- no cycle.

$UA(s_0 \rightarrow^* s)$; goal-oriented reduction

Sufficient condition for reachability $UA(s_0 \rightarrow^* s)$

- Based on the Local Causality Graph
- · Considers a broader set of objectives
- Simple version linear with LCG; more efficient is NP (basic idea: choose a single local path for each objective)

[Paulevé et al, MSCS, 2012; Folschette et al, TCS, 2015]

Goal-oriented model reduction

- Based on the Local Causality Graph;
- Considers a broader set of objectives (than OA and UA)
- Linear with LCG
- Preserves all the minimal traces to the goal, whatever step semantics

[submitted]

Experiments

For each model

- select an initial state;
- select a goal (activation of a node).

				Verification of goal reachability			
Model	T	# states	unf	NuSMV (EF g)	its-reach	pint	
TCell-d (101)	384	$pprox 2.7 \cdot 10^8$	257	3s 40Mb	0.5s 24Mb	0.05s	
profile 1							
TCell-d (101)	384	KO	KO	КО	0.5s 23Mb	1.5s	
profile 2				-	-	-	
RRE2E (370)	742	KO	KO	КО	КО	0.3s	
100221 (370)							
MAPK-Schoeberl	1251	KO	KO	КО	КО	90s	
(309)							

Experiments

Experiments œ^{f.} - - ç, تجلم 면 8 t t < h.

Towards the logical prediction of control targets for biological networks: Applications

[Calzone et al, Mol Syst Biol, 2008]

Experiments

For each model

- select an initial state;
- select a goal (activation of a node).

				Verification of goal reachability			
Model	T	# states	unf	NuSMV (EF g)	its-reach	pint	
TCell-d (101)	384	$pprox 2.7 \cdot 10^8$	257	3s 40Mb	0.5s 24Mb	0.05s	
profile 1							
TCell-d (101)	384	KO	KO	КО	0.5s 23Mb	1.5s	
profile 2				-	-	-	
RRE2E (370)	742	KO	KO	КО	КО	0.3s	
100221 (370)							
MAPK-Schoeberl	1251	KO	KO	КО	КО	90s	
(309)							

Experiments

For each model

- select an initial state;
- select a goal (activation of a node).

				Verification of goal reachability			
Model	T	# states	unf	NuSMV (EF g)	its-reach	pint	
TCell-d (101)	384	$pprox 2.7 \cdot 10^8$	257	3s 40Mb	0.5s 24Mb	0.05s	
profile 1	0	1	1				
TCell-d (101)	384	KO	KO	КО	0.5s 23Mb	1.5s	
profile 2	161	75,947,684	ко	474s 260Mb	0.3s 19Mb		
RBE2F (370)	742	KO	KO	KO	КО	0.3s	
	56	2,350,494	28,856	5s 377Mb	5s 170Mb		
MAPK-Schoeberl	1251	KO	KO	КО	КО	90s	
(309)	429	ко	ко	ко ко			

In all cases, reduction step took less than 0.1s

Experiments

Goal-oriented reduction

Goal-oriented LTL/CTL model checking

- requires all the minimal traces
- cut set verification: not E [$(a \neq i \land b \neq j)$ U g]

	Wnt (32)	TCell-r (40)	EGF-r (104)	TCell-d (101)	RBE2F (370)
NuSMV	44s 55Mb	ко ко		KO	KO
	9.1s 27Mb	2.4s 34Mb	13s 33Mb	600s 360Mb	6s 29Mb
ita ctl	105s 2.1Gb	492s 10Gb	KO	KO	KO
ILS-CLI	16s 720Mb	11s 319Mb	21s 875Mb	ко	179s 1.8Gb

Application to cut sets

Cut set for g from s_0

• Set of local states C such that g is not reachable if all transitions involving a local state in C are removed.

From Local Causality Graph

- Direct computation of cut sets (no enumeration of candidates)
- Under-approximation: some may be missed.

Experiments

OCaml implementation (Pint) pint-reach --cutsets N -i model.an g=1

N-cut sets: cut sets of cardinality at most N.

	TCell-d (101)	RBE2F (370)	MAPK-Schoeberl (309)	PID (21,000)			
4-cut sets	0.03s (27)	0.06s (57)	0.1s (34)	39s (37)			
6-cut sets	0.03s (27)	0.76s (334)	0.5s (43)	2.6h (1257)			

[Paulevé et al at CAV 2013]

To be benchmarked: SAT implementation.

Application to bifurcations

Bifurcation from s_0 to g

- local transition (e.g. $t_b = c_0 \xrightarrow{a_0, b_1} c_1$)
- $s_0 \rightarrow^* s_b \rightarrow^* g$; and $s_b \cdot t_b \not\rightarrow^* g$.
- relaxed: UA(s₀ →* s_b), UA(s_b →* g), ¬OA(s_b · t_b →* g) ⇒ under-approximation of bifurcations

Application to bifurcations Implementation

Given s_0 and g (goal), find s_b and t_b such that:

$$\mathsf{UA}(s_0 \to^* s_b) \land \mathsf{UA}(s_b \to^* g) \land \neg \mathsf{OA}(s_b \cdot t_b \to^* g)$$

- OA and UA can be implemented in SAT;
- when tractable, UA($s_0 \rightarrow^* s_b$) can be replaced with an exact checking (e.g., prefix of unfolding).
- we used ASP solver (convenient input language).

[submitted]

Application to bifurcations Experiments

[Abou-Jaoudé et al, Frontiers in Bioengineering and Biotechnology, 2015] 101 automata, 381 local transitions

s ₀ Goal	Goal	Nb states	$s_0 \rightarrow $	$UA(s_0 \rightarrow^* g)$			
	ND States	$ unf-prefix(s_0) $	$ t_b $	Time	$ t_b $	Time	
+b17	$RORGT_1$	$pprox 4 \cdot 10^9$	2860	9	23.9 <i>s</i>	8	29.04 <i>s</i>
	$BCL6_1$			5	26.2 <i>s</i>	4	26.64 <i>s</i>
итс	BCL6 ₁	KO	KO	-	-	6	61.9 <i>s</i>
піс	$GATA3_1$	KU	ĸu	-	-	7	34.16 <i>s</i>

Conclusion

Static analysis for transient reachability

- Scalable to large networks of small automata.
- Applications to reachability, cut sets, bifurcations.
- Model reduction which preserves all traces to a given goal.

Step semantics

- Reachability over-approximation, cut sets, and model reduction work for most step semantics (async, sync, mixed).
- Reachability under-approximation works only if async transitions are possible.

Comments

- Gives correct, but incomplete results.
- Exploits the low scope of transitions in logical networks: each local transitions depend on a few automata (same apply for the goal).

Software: Pint

http://loicpauleve.name/pint

- Input: automata networks
 - convert SBML-qual/GINsim with LogicalModels¹
 - scripts for CellNetAnalyser, Biocham, etc.
- Command line tools:
 - · Static analysis for reachability, cut sets, fixed points
 - Model reduction w.r.t. reachability property
 - Inference of Interaction graph/Thomas parameters
 - Interface with model-checkers (NuSMV, ITS, mole).
- OCaml library (possible C/C++ bindings)

¹https://github.com/colomoto/logicalmodel

Current/future work

Reducing approximations

- Coupling with Petri net unfoldings
- LCG and unfoldings exploit concurrency
- Adapt algorithms to unfoldings: higher complexity, but complete results.

Towards general cell reprogramming

- Predicts mutations/perturbations to trigger an attractor change
- Reachability properties are central
- Large number of candidates, hopefully restrictable by
 - topology
 - unfolding
 - LCG

Towards the logical prediction of control targets for biological networks

Loïc Paulevé

LRI, CNRS / Université Paris-Sud, Orsay, France – BioInfo team loic.pauleve@lri.fr http://loicpauleve.name

Open University Digicosme - 2016, May 18