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Towards the logical prediction of control targets for biological networks: Introduction
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Interaction networks
E.g., Signalling Networks, Gene Regulatory Networks
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Components
Genes, proteins, complexes,
. . .

Activations
Positive influence (a increase
may promote c increase).
Inhibitions
Negative influence (b increase
may promote d decrease).

Typical settings
100 to +10,000 components
Few information on kinetics
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Logical models of qualitative dynamics
E.g., Boolean networks, Automata networks
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Local state of node
Discrete variable (Boolean, multi-valued).
No population ⇒ qualitative level

Rules for updating the state w.r.t. to the
state of its regulators:
Function based
Boolean/Thomas networks
Transition based
Petri nets/Automata networks

Dynamics
Transitions between global states
Can be non-deterministic
(e.g., different ordering of node changes, but
not only).
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Reachability-related properties

Global state graph

initial state
state reaching goal

goal state
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Reachability-related properties

Global state graph

initial state
state reaching goal

goal state

cut set
set of local states that intersect
with all the traces to the goal

not E [ (not a=1 and not b=1) U g ] 
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Reachability-related properties

Global state graph

initial state
state reaching goal

goal state

reachable state

Bifurcations
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Challenges for scalability

Modelling issues

• Partially-specified interactions.

• Boolean networks need to be fully specified
(deterministic Boolean function fa).

• Intractable enumeration of all models.
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Analysis issues

• Combinatorial explosion of behaviours
(e.g. 2100 - 1030 to 210 000 - 103000 states).

• Reachability is PSPACE-complete

• Large range of control candidate to consider

• Large range of initial conditions to consider
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Outline

Static analysis for Automata Networks dynamics

• Dedicated to transient reachability analysis

• Highly scalable

• Correct results (over-/under-approximations). . .

• but incomplete.

Menu:

1 Local Causality Analysis

2 Application to reachability-related properties

3 Current/future work
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Automata Networks
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Automata Network modelling of Biological Networks

Transition-centered specification

• .. in opposition to function-centered of Boolean/Thomas networks

• explicit context/causality of state changes

• closely related to (safe) Petri nets

• step semantics (purely async, purely sync, mixed)

Modelling

• any Boolean/Thomas networks can be encoded;

• in case of logical rules uncertainty: model the union of Boolean/Thomas
networks (over-approximation of behaviours)

• encoding of SBGN Process Description models [Rougny et al. BMC Systems
Biology, in press] (includes reaction networks, e.g., Biocham models).

Tools

• models can be converted from SBML-qual/GINsim using logicalmodel
(https://github.com/colomoto/logicalmodel)

• analysis using Pint (http://loicpauleve.name/pint)

Loïc Paulevé 14/31
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Local Causality
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local-paths(a0 a2) = {a0
b0−→ a1

c1−→ a2,

a0
b2−→ a2}

local-paths#(a0 a2) = {{b0, c1}, {b2}}

a0 a2

b0 c1 b2

For any trace π starting at some global state s with a0 ∈ s and reaching a2:

• either a0
b0−→ a1

c1−→ a2 or a0
b2−→ a2 is a sub-trace of π;

• either b0 and c1, or b2 are reached before a2 in π.
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Local Causality Graph

• Initial context ς = {a 7→ {0}; b 7→ {0}; c 7→ {0, 1}; d 7→ {0}}.
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Local Causality Graph
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Local Causality Graph

• Initial context ς = {a 7→ {0}; b 7→ {0}; c 7→ {0, 1}; d 7→ {0}}.

a2

a0 a2

c1b0

c1 c1

c0 c1

b0 b0

b2

b0 b2

d1 d0 d1

Complexity
Nb of objectives: poly(automata size) x nb automata
Nb of local paths: exp(automata size), poly(local transitions)
Usually, automata size is very small (2 for Boolean networks)
⇒ highly tractable for large networks of small automata
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Application to reachability

initial state
state reaching goal

goal state

reachability
EF c=1

Local causality analysis

• Necessary (OA) or sufficient (UA) conditions

UA(s0 →∗ s)⇒ s0 →∗ s ⇒ OA(s0 →∗ s)

• Model reduction which preserves all minimal traces

• OA: linear with LCG; UA: NP; reduction: linear
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Necessary conditions for reachability
Example
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Necessary condition OA(s0 →∗ d2)
There exists a traversal of the LCG s.t.:
• objective → follow at least one solution;

• local state → follow all objectives;

• local path → follow all local states;

• no cycle.

d1 d2

b2 b0 b2 d1 d1 d1

b1 b0 b1 c1 c0 c1 a0 a1 a0⊥

No
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UA(s0 →∗ s); goal-oriented reduction

Sufficient condition for reachability UA(s0 →∗ s)

• Based on the Local Causality Graph

• Considers a broader set of objectives

• Simple version linear with LCG; more efficient is NP
(basic idea: choose a single local path for each objective)

[Paulevé et al, MSCS, 2012; Folschette et al, TCS, 2015]

Goal-oriented model reduction

• Based on the Local Causality Graph;

• Considers a broader set of objectives (than OA and UA)

• Linear with LCG

• Preserves all the minimal traces to the goal, whatever step semantics

[submitted]
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Experiments

For each model

• select an initial state;

• select a goal (activation of a node).

Verification of goal reachability

Model |T | # states |unf| NuSMV (EF g) its-reach pint

TCell-d (101) 384 ≈ 2.7 · 108 257 3s 40Mb 0.5s 24Mb 0.05s
profile 1 0 1 1

TCell-d (101) 384 KO KO KO 0.5s 23Mb 1.5s
profile 2 161 75,947,684 KO 474s 260Mb 0.3s 19Mb

RBE2F (370)
742 KO KO KO KO 0.3s
56 2,350,494 28,856 5s 377Mb 5s 170Mb

MAPK-Schoeberl 1251 KO KO KO KO 90s
(309) 429 KO KO KO KO

In all cases, reduction step took less than 0.1s

Loïc Paulevé 20/31
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Experiments
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[Schoeberl et al, Nature Biotechnology, 2002]
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Experiments
Goal-oriented reduction

Goal-oriented LTL/CTL model checking

• requires all the minimal traces

• cut set verification: not E [ (a 6= i ∧ b 6= j) U g ]

Wnt (32) TCell-r (40) EGF-r (104) TCell-d (101) RBE2F (370)

NuSMV
44s 55Mb KO KO KO KO
9.1s 27Mb 2.4s 34Mb 13s 33Mb 600s 360Mb 6s 29Mb

its-ctl
105s 2.1Gb 492s 10Gb KO KO KO
16s 720Mb 11s 319Mb 21s 875Mb KO 179s 1.8Gb
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Application to cut sets

initial state
state reaching goal

goal state

cut set
set of local states that intersect
with all the traces to the goal

not E [ (not a=1 and not b=1) U g ] 

Cut set for g from s0
• Set of local states C such that g is not reachable if all transitions involving a
local state in C are removed.

From Local Causality Graph

• Direct computation of cut sets (no enumeration of candidates)

• Under-approximation: some may be missed.
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Cut Sets Under-approximation
Example
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Experiments

OCaml implementation (Pint)
pint-reach --cutsets N -i model.an g=1

N-cut sets: cut sets of cardinality at most N.

TCell-d (101) RBE2F (370) MAPK-Schoeberl (309) PID (21,000)

4-cut sets 0.03s (27) 0.06s (57) 0.1s (34) 39s (37)

6-cut sets 0.03s (27) 0.76s (334) 0.5s (43) 2.6h (1257)
[Paulevé et al at CAV 2013]

To be benchmarked: SAT implementation.
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Application to bifurcations

initial state
state reaching goal

goal state

reachable state

Bifurcations

Bifurcation from s0 to g

• local transition (e.g. tb = c0
a0,b1−−−→ c1)

• s0 →∗ sb →∗ g; and sb · tb 6→∗ g.

• relaxed: UA(s0 →∗ sb), UA(sb →∗ g), ¬OA(sb · tb →∗ g)
⇒ under-approximation of bifurcations
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Application to bifurcations
Implementation

Given s0 and g (goal), find sb and tb such that:

UA(s0 →∗ sb) ∧ UA(sb →∗ g) ∧ ¬OA(sb · tb →∗ g)

• OA and UA can be implemented in SAT;

• when tractable, UA(s0 →∗ sb) can be replaced with an exact checking (e.g.,
prefix of unfolding).

• we used ASP solver (convenient input language).

[submitted]
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Application to bifurcations
Experiments

[Abou-Jaoudé et al, Frontiers in Bioengineering and Biotechnology, 2015]
101 automata, 381 local transitions

s0 Goal Nb states
s0 →∗ g UA(s0 →∗ g)

|unf-prefix(s0)| |tb| Time |tb| Time

th17
RORGT1 ≈ 4 · 109 2860

9 23.9s 8 29.04s
BCL61 5 26.2s 4 26.64s

HTG
BCL61 KO KO

- - 6 61.9s
GATA31 - - 7 34.16s
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Conclusion

Static analysis for transient reachability

• Scalable to large networks of small automata.

• Applications to reachability, cut sets, bifurcations.

• Model reduction which preserves all traces to a given goal.

Step semantics

• Reachability over-approximation, cut sets, and model reduction work for most
step semantics (async, sync, mixed).

• Reachability under-approximation works only if async transitions are possible.

Comments

• Gives correct, but incomplete results.

• Exploits the low scope of transitions in logical networks: each local transitions
depend on a few automata (same apply for the goal).
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Software: Pint
http://loicpauleve.name/pint

• Input: automata networks
• convert SBML-qual/GINsim with LogicalModels1
• scripts for CellNetAnalyser, Biocham, etc.

• Command line tools:
• Static analysis for reachability, cut sets, fixed points
• Model reduction w.r.t. reachability property
• Inference of Interaction graph/Thomas parameters
• Interface with model-checkers (NuSMV, ITS, mole).

• OCaml library (possible C/C++ bindings)

1https://github.com/colomoto/logicalmodel
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Current/future work

Reducing approximations

• Coupling with Petri net unfoldings

• LCG and unfoldings exploit concurrency

• Adapt algorithms to unfoldings: higher complexity, but complete results.

Towards general cell reprogramming

• Predicts mutations/perturbations to trigger an attractor change

• Reachability properties are central
• Large number of candidates, hopefully restrictable by

• topology
• unfolding
• LCG
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