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Towards the logical prediction of control targets for biological networks: Introduction

Interaction networks
E.g., Signalling Networks, Gene Regulatory Networks

a — v ¢ Components

/\ Genes, proteins, complexes,

% Activations
N Positive influence (a increase
+ may promote ¢ increase).
Inhibitions
Negative influence (b increase
b may promote d decrease).

\ Typical settings
100 to +10,000 components
\Few information on kinetics
/
f
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Towards the logical prediction of control targets for biological networks: Introduction

Logical models of qualitative dynamics
E.g., Boolean networks, Automata networks

a ;) C Local state of node
/\ Discrete variable (Boolean, multi-valued).

No population = qualitative level

Rules for updating the state w.r.t. to the
state of its regulators:

+ Function based

Boolean/Thomas networks

Transition based

b Petri nets/Automata networks

\ Dynamics
Transitions between global states

~—— Can be non-deterministic
(e.g., different ordering of node changes, but
not only).
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Reachability-related properties

Global state graph

@ initial state
© state reaching goal
@ goal state
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Reachability-related properties

Global state graph

.\ @ initial state

© state reaching goal
@ goal state

cut set
set of local states that intersect

with all the traces to the goal

not E [ (nota=1and notb=1)Ug]
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Reachability-related properties

Global state graph

.\ @ initial state

© state reaching goal
@ goal state

% Q reachable state

Bifurcations
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Towards the logical prediction of control targets for biological networks: Introduction

Challenges for scalability

Modelling issues
e Partially-specified interactions.

e Boolean networks need to be fully specified
(deterministic Boolean function f3). d

L

e Intractable enumeration of all models.

Analysis issues

e Combinatorial explosion of behaviours
(e.g. 2100 _ 1030 to 210000 _ 103000 gtates).

e Reachability is PSPACE-complete
e Large range of control candidate to consider

e Large range of initial conditions to consider
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Towards the logical prediction of control targets for biological networks

Static analysis for Automata Networks dynamics
e Dedicated to transient reachability analysis
e Highly scalable
e Correct results (over-/under-approximations). . .

e but incomplete.

Menu:
® Local Causality Analysis
® Application to reachability-related properties
® Current/future work

Loic Paulevé
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Automata Networks

@
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Asynchronous semantics (one transition at a time):
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Towards the logical prediction of control targets for biological networks: Local Causality Analysis
Automata Network modelling of Biological Networks

Transition-centered specification
e .. in opposition to function-centered of Boolean/Thomas networks
e explicit context/causality of state changes
e closely related to (safe) Petri nets

e step semantics (purely async, purely sync, mixed)

Modelling
e any Boolean/Thomas networks can be encoded;

e in case of logical rules uncertainty: model the union of Boolean/Thomas
networks (over-approximation of behaviours)

e encoding of SBGN Process Description models [Rougny et al. BMC Systems
Biology, in press] (includes reaction networks, e.g., Biocham models).

Tools

e models can be converted from SBML-qual/GINsim using logicalmodel
(https://github.com/colomoto/logicalmodel)

e analysis using Pint (http://loicpauleve.name/pint)

Loic Paulevé
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Towards the logical prediction of control targets for biological networks: Local Causality Analysis

Local Causality

b
(:) local-paths(ag~ az) = {a0 —% a1 — as,

b,
ao AQ—) 82}

local-paths™ (ag~ az) = {{bo, c1}, {b>}}

aop ~> az
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Local Causality

b
(:) local-paths(ag~ az) = {a0 —% a1 — as,

b,
ao AQ—) ag}

local-paths™ (ap~>as) = {{bo, a1}, {b2}}

aop ~> az

SR TS

For any trace 7 starting at some global state s with ag € s and reaching as:

. bo c1 bo .
e ejither ag — a1 — a» or ag — ao is a sub-trace of m;

e either by and c1, or by are reached before ay in 7.
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Towards the logical prediction of control targets for biological networks: Local Causality Analysis

Local Causality Graph
e Initial context ¢ = {a+ {0}; b+ {0};c+— {0,1};d — {0}}.

do ~>az

@)
o] —

bowbz T/bowbo C1~>C1

@} et
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Local Causality Graph
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Local Causality Graph
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Local Causality Graph
e Initial context ¢ = {a+ {0}; b+ {0};c+— {0,1};d — {0}}.

Local state

Objective
from initial context\

Local path - prior steps 90~ @2

O Q
5 wa
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Towards the logical prediction of control targets for biological networks: Local Causality Analysis
Local Causality Graph

e Initial context ¢ = {a— {0}; b+— {0}; c — {0, 1};d — {0}}.

do ~>az

_

Co~>C1

Complexity

Nb of objectives: poly(automata size) x nb automata

Nb of local paths: exp(automata size), poly(local transitions)
Usually, automata size is very small (2 for Boolean networks)

= highly tractable for-large networks of small automata

Loic Paulevé
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Towards the logical prediction of control targets for biological networks: Applications

Application to reachability

@ initial state
@ state reaching goal
@ goal state

reachability
EF c=1

Local causality analysis

e Necessary (OA) or sufficient (UA) conditions
UA(so =% s) = sp =" s = OA(sp =" s)
e Model reduction which preserves all minimal traces

e OA: linear with LCG; UA: NP; reduction: linear

Loic Paulevé
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Towards the logical prediction of control targets for biological networks: Applications

®©
2
@
1 1
0 0

Necessary conditions for reachability

Example

Necessary condition OA(sy —* d>)
There exists a traversal of the LCG s.t.:

® objective — follow at least one solution;

® |ocal state — follow all objectives;
® |ocal path — follow all local states;

® no cycle.

No
als co~a *} aj~ag |

B
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Necessary conditions for reachability

Example

Necessary condition OA(sy —* d>)
There exists a traversal of the LCG s.t.:

® objective — follow at least one solution;

® |ocal state — follow all objectives;

® |ocal path — follow all local states;

® no cycle.
@©

l!l»cb~»dlgao

Inconc

ay~»ai —0
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Towards the logical prediction of control targets for biological networks: Applications

UA(sp —* s); goal-oriented reduction

Sufficient condition for reachability UA(sp —* s)
e Based on the Local Causality Graph
e Considers a broader set of objectives

e Simple version linear with LCG; more efficient is NP
(basic idea: choose a single local path for each objective)

[Paulevé et al, MSCS, 2012; Folschette et al, TCS, 2015]

Goal-oriented model reduction
e Based on the Local Causality Graph;
e Considers a broader set of objectives (than OA and UA)
e Linear with LCG
e Preserves all the minimal traces to the goal, whatever step semantics

[submitted]
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Towards the logical prediction of control targets for biological networks: Applications

Experiments

For each model
e select an initial state;

e select a goal (activation of a node).

Verification of goal reachability

Model | T| # states |unf] NuSMV (EF g) its-reach pint
TCell-d (101) 384 | ~27-10° | 257 || 3s 40Mb | 05s 24Mb | 0.05s
profile 1

TCell-d (101) 384 | Ko Kol KO [05s 23Mb | 1.5s
profile 2

RBEZF (370) 742 | Ko Kol KO { Ko | o3s
MAPK-Schoeberl || 1251 | Ko Kol KO { Ko | o0s
(309)
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Experiments

B
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[Calzone et al, Mol Syst Biol, 2008]
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For each model

e select an initial state;

e select a goal (activation of a node).

Towards the logical prediction of control targets for biological networks: Applications

Experiments

Verification of goal reachability

Model

| T| # states |unf] NuSMV (EF g) its-reach pint
TCell-d (101) 384 | ~2.7-10°8 257 3s 40Mb 0.5s 24Mb 0.05s
TCell-d (101) 384 KO KO KO 0.5s  23Mb 1.5s
profile 2 161 | 75,947,684 KO || 474s 260Mb | 0.3s 19Mb
RBE2F (370) 742 KO KO KO KO 0.3s

56 | 2,350,494 | 28,856 5s 377Mb 5s 170Mb
MAPK-Schoeberl || 1251 KO KO KO KO 90s
(309) 429 KO KO KO KO

In all cases, reduction step took less than 0.1s

Loic Paulevé
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Towards the logical prediction of control targets for biological networks: Applications
Experiments

Goal-oriented reduction

Goal-oriented LTL/CTL model checking

e requires all the minimal traces
e cut set verification: not E [ (aZiAb#Jj) U g ]

Whnt (32) | TCell-r (40) | EGF-r (104) | TCell-d (101) | RBE2F (370)
i 445 55Mb KO KO KO KO

0.1s 27Mb | 2.4s 34Mb 13s 33Mb 600s 360Mb 6s 29Mb
itecry | 10552.1Gb | 4925 10Gb KO KO KO

165 720Mb | 11s310Mb | 21s 875Mb KO 179s 1.8Gb

Loic Paulevé
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Towards the logical prediction of control targets for biological networks: Applications

Application to cut sets

@ initial state
© state reaching goal
@ goal state

&

cut set
set of local states that intersect
with all the traces to the goal

not E[(nota=1and notb=1)Ug]

Cut set for g from sp

e Set of local states C such that g is not reachable if all transitions involving a
local state in C are removed.

From Local Causality Graph
e Direct computation of cut sets (no enumeration of candidates)

e Under-approximation: some may be missed.
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Cut Sets Under-approximation

Example

@)
O
Rt
bo ~> by bo ~ bg Ci~C
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O
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Cut Sets Under-approximation

Example
O
O
el
bg ~ b2
S do~>dy {bo} )
{bo}, {ch}
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Cut Sets Under-approximation

Example
O
O
i
bo~~>bo {bo}, {c1} bo} bo~>bg 0 i~ al
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Cut Sets Under-approximation

Example

{bo}, {b2}, {1}

Co~C1

bo~+ by {bo}, {ci} bo~>by 0 1~ Cl

O do~>di {bo} !
{bod Adi} 3 1y
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Cut Sets Under-approximation

Example

{bo}. {b2}. (e} {bo}. {b2. a}. {a1, ch}
O

Q A{bo}, {1}

{bo}, {b2}, {1}

Co~C1

bo~+ by {bo}, {ci} bg~>bo 0 ca~cer )

e do~»di {bo} / '
{bod Adi} 3 1y

Loic Paulevé 23/31



Towards the logical prediction of control targets for biological networks: Applications

Cut Sets Under-approximation

Example

{a2}, {bo}, {b2, 1}, {c1, di}

{bo}. {b2}. (e} {bo}. {b2. a}. {a1, ch}
O

Q A{bo}, {1}

{bo}, {b2}, {1}

Co~C1

bo~+ by {bo}, {ci} bg~>bo 0 ca~cer )

e do~»di {bo} / '
{bod Adi} 3 1y

Loic Paulevé 23/31



Towards the logical prediction of control targets for biological networks: Applications

Cut Sets Under-approximation

Example
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Abo}t b2, ci} {c1, di}
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O

Q A{bo}, {1}
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bo~+ by {bo} {di} bg~ by 0 ci~cr
& do~>di {bo} 0 ]
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Cut Sets Under-approximation

Example

{ao}, {bo}, {b2, 1}, {c1, di}

a ,{bo}, {bQ, Cl}, {Cl, dl}
{bo}, {b2, c1}, {c1, ch }

ag~>az

{bo}, {b2}, {c1}
O QO {bo}, {1}

{ax}, {bo}, {bp,c1}, {c1, di}

Co~C1

O do~~dy {bo} i(b '
{bod Adi} 3 1y
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Towards the logical prediction of control targets for biological networks: Applications

OCaml implementation (Pint)

pint-reach --cutsets N -i model.an g=1

N-cut sets: cut sets of cardinality at most N.

Experiments

TCell-d (101) | RBE2F (370) | MAPK-Schoeberl (309) | PID (21,000)
4-cut sets 0.03s (27) 0.06s (57) 0.1s (34) 39s (37)
6-cut sets 0.03s (27) | 0.76s (334) 0.5s (43) | 2.6h (1257)

[Paulevé et al at CAV 2013]

To be benchmarked: SAT implementation.

Loic Paulevé
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Towards the logical prediction of control targets for biological networks: Applications

Application to bifurcations

@ initial state

© state reaching goal
@ goal state
Q reachable state

- ag. by
e |ocal transition (e.g. t, = cg — ¢1)
e sp =% s, =" g;and sy -ty AF g

o relaxed: UA(sp —=* sp), UA(sp —=* g), " OA(sp - tp, =™ g)
= under-approximation of bifurcations

Bifurcations

Bifurcation from sy to g

Loic Paulevé

25/31



Towards the logical prediction of control targets for biological networks: Applications

Application to bifurcations
Implementation

Given sp and g (goal), find s, and tp, such that:
UA(so = sp) AUA(sp, =" g) A 2 OA(sp - tp =™ g)

e OA and UA can be implemented in SAT;

e when tractable, UA(sp —* sp) can be replaced with an exact checking (e.g.,
prefix of unfolding).

e we used ASP solver (convenient input language).

[submitted]
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Towards the logical prediction of control targets for biological networks: Applications

Application to bifurcations

Experiments

[Abou-Jaoudé et al

, Frontiers in Bioengineering and Biotechnology, 2015]
101 automata, 381 local transitions

so—*g UA(sp —* g)

* Goal | Nbstates || prefix(so)] | [f] | Time || 6] | Time
RORGT; | _ 5 9 | 23.0s 8 | 20.04s

thi7 BCL6; ~4-10 2860 | 5 | 26.06 4 | 26.64s
BCL6; - - 6 61.9s

HTG GATA3, KO KO | . - 7 | 34.16s
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Conclusion

Static analysis for transient reachability
e Scalable to large networks of small automata.
e Applications to reachability, cut sets, bifurcations.

e Model reduction which preserves all traces to a given goal.

Step semantics

e Reachability over-approximation, cut sets, and model reduction work for most
step semantics (async, sync, mixed).

e Reachability under-approximation works only if async transitions are possible.

Comments
e Gives correct, but incomplete results.

e Exploits the low scope of transitions in logical networks: each local transitions
depend on a few automata (same apply for the goal).
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Software: Pint
http://loicpauleve.name/pint

Pint

Static analyzer for dynamics of Automata Networks

version 2015-10-19

e |nput: automata networks
e convert SBML-qual/GINsim with LogicalModels®
e scripts for CellNetAnalyser, Biocham, etc.

e Command line tools:

Static analysis for reachability, cut sets, fixed points
Model reduction w.r.t. reachability property
Inference of Interaction graph/Thomas parameters
Interface with model-checkers (NuSMV, ITS, mole).

e OCaml library (possible C/C++ bindings)

Ihttps://github. com/colomoto/logicalmodel
Loic Paulevée
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Current/future work

Reducing approximations
e Coupling with Petri net unfoldings
e LCG and unfoldings exploit concurrency

e Adapt algorithms to unfoldings: higher complexity, but complete results.

Towards general cell reprogramming
e Predicts mutations/perturbations to trigger an attractor change
e Reachability properties are central

e |Large number of candidates, hopefully restrictable by

e topology
e unfolding
e LCG
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