
Around Reachability in Automata Networks

Loïc Paulevé

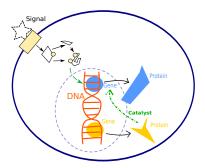
LRI, CNRS / Université Paris-Sud, Orsay, France – BioInfo team loic.pauleve@lri.fr http://loicpauleve.name

Journées annuelles GT BIOSS - 1-2 Juillet 2016

CNRS MASTODONS

Reachability in models of biological networks

Validation


• Ability to reproduce data

Prediction

- Cell response w.r.t. signal+environment
- Long-term behaviours (differentiation)

Control

• Mutations/Perturbations for modifying cell behaviour, Trans/De-differentiation

Reachability in models of biological networks

Validation

Ability to reproduce data

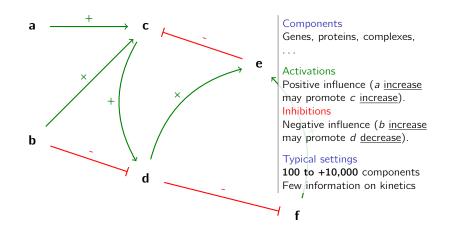
Prediction

- Cell response w.r.t. signal+environment
- Long-term behaviours (differentiation)

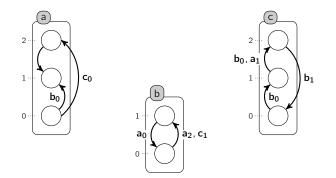
Control

• Mutations/Perturbations for modifying cell behaviour, Trans/De-differentiation

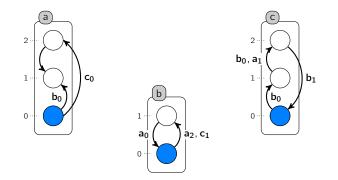
(Computational models of dynamics


$$\Rightarrow$$
 $\left\{ -$ Formal verification

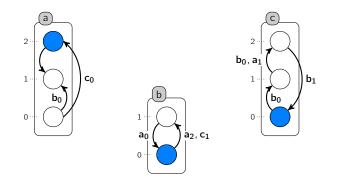
(–Automatic reasoning


Around Reachability in Automata Networks: Introduction

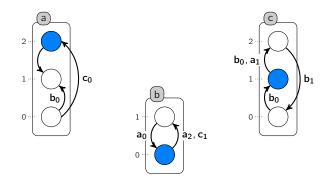
Influence networks


E.g., Signalling Networks, Gene Regulatory Networks

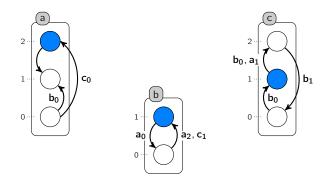
Around Reachability in Automata Networks: Automata Networks

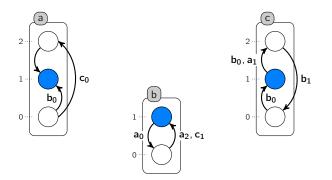


Automata Networks



Asynchronous semantics (one transition at a time):


 $\langle a_0, b_0, c_0 \rangle$


$$\begin{array}{c} \langle a_2, b_0, c_0 \rangle \\ \nearrow \\ \langle a_0, b_0, c_0 \rangle \\ \searrow \\ \langle a_1, b_0, c_0 \rangle \end{array}$$

$$\begin{array}{c} \langle a_2, b_0, c_0 \rangle \longrightarrow \langle a_2, b_0, c_1 \rangle \\ \nearrow \\ \langle a_0, b_0, c_0 \rangle \\ \searrow \\ \langle a_1, b_0, c_0 \rangle \end{array}$$

$$\begin{array}{c} \langle a_2, b_0, c_0 \rangle \longrightarrow \langle a_2, b_0, c_1 \rangle \longrightarrow \langle a_2, b_1, c_1 \rangle \\ \nearrow \\ \langle a_0, b_0, c_0 \rangle \\ \searrow \\ \langle a_1, b_0, c_0 \rangle \end{array}$$

$$\begin{array}{c} \langle a_2, b_0, c_0 \rangle \longrightarrow \langle a_2, b_0, c_1 \rangle \longrightarrow \langle a_2, b_1, c_1 \rangle \longrightarrow \langle a_1, b_1, c_1 \rangle \\ \nearrow \\ \langle a_0, b_0, c_0 \rangle \\ \searrow \\ \langle a_1, b_0, c_0 \rangle \longrightarrow \cdots \end{array}$$

Automata Network modelling of Biological Networks

Transition-centered specification

- .. in opposition to function-centered of Boolean/Thomas networks
- explicit context/causality of state changes
- closely related to (safe) Petri nets
- step semantics (purely async, purely sync, mixed)

Modelling

- any Boolean/Thomas networks can be encoded;
- in case of logical rules uncertainty: model the union of Boolean/Thomas networks (over-approximation of behaviours)
- encoding of SBGN Process Description models [Rougny et al. BMC Systems Biology, in press] (includes reaction networks, e.g., Biocham models).

Tools

- models can be converted from SBML-qual/GINsim using logicalmodel (https://github.com/colomoto/logicalmodel)
- analysis using Pint (http://loicpauleve.name/pint)

Motivations

Bad news: reachability is PSPACE-complete.

Motivation

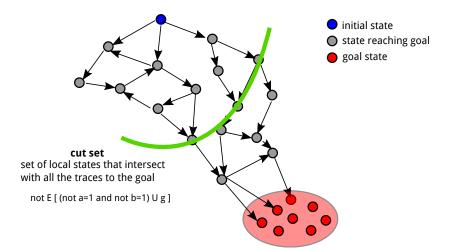
- Identify control targets without exact verification
- Model reduction preserving reachability

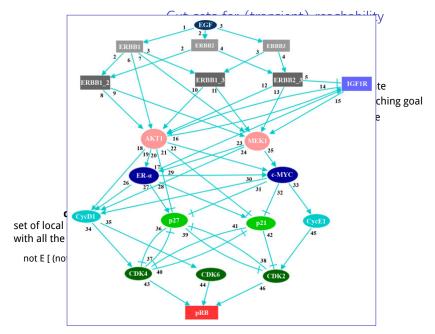
Approach

- Necessary/sufficient conditions with lower complexity
- Relax completeness, ensure correctness Under-approximation: no false positive, but false negatives
- Relax correctness, ensure completeness
 Over-approximation: no false negative, but false positives

Software: Pint

http://loicpauleve.name/pint


- Input: automata networks
 - convert SBML-qual/GINsim with LogicalModels
 - scripts for CellNetAnalyser, Biocham, etc.
- Command line tools:
 - · Static analysis for reachability, cut sets, fixed points
 - Model reduction w.r.t. reachability property
 - Inference of Interaction graph/Thomas parameters
 - Interface with model-checkers (NuSMV, ITS, mole).
- OCaml library (possible C/C++ bindings)

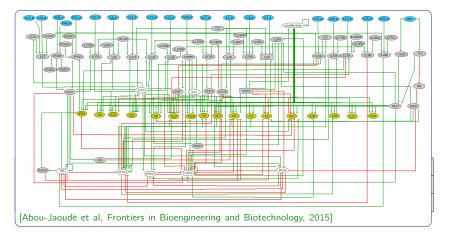

model.an:
a [0, 1]
b [0, 1, 2]
c [0, 1]

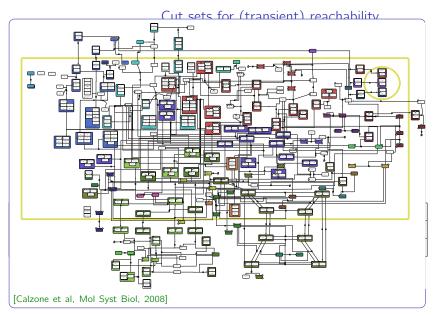
a 0 -> 1 when b=0 and c=1 a 1 -> 0 when b=1 a 1 -> 0 when b=2 a 1 -> 0 when c=0 b 0 -> 1 when a=1 b 1 -> 2 when a=1

Cut sets for (transient) reachability

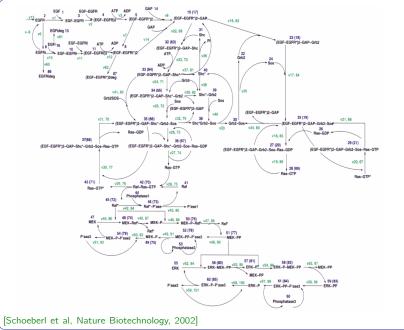
Global state graph

Cut sets for (transient) reachability Experiments


Under-approximation of N-cut sets (cardinality at most N)


```
$ pint-reach --cutsets 4 --no-init-cutsets -i TCell-d.an BCL6=1
"GP130"=1
"STAT3"=1
"CD28"=1,"IL6R"=1
...
"IL6RA"=1,"TCR"=1
```

	TCell-d (101)	RBE2F (370)	MAPK-Schoeberl (309)	PID (21,000)
4-cut sets	0.03s (27)	0.06s (57)	0.1s (34)	39s (37)
6-cut sets	0.03s (27)	0.76s (334)	0.5s (43)	2.6h (1257)

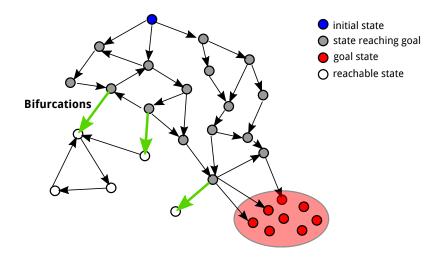

[Paulevé et al at CAV 2013]

Cut sets for (transient) reachability Experiments

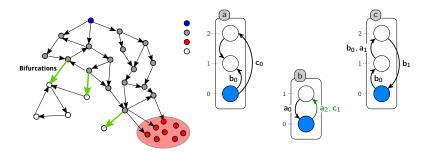
Around Reachability in Automata Networks: Overview of analyses

Cut sets for (transient) reachability Experiments

Under-approximation of N-cut sets (cardinality at most N)


```
$ pint-reach --cutsets 4 --no-init-cutsets -i TCell-d.an BCL6=1
"GP130"=1
"STAT3"=1
"CD28"=1,"IL6R"=1
...
"IL6RA"=1,"TCR"=1
```

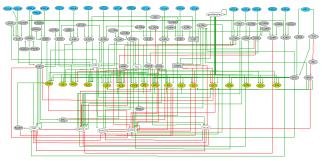
	TCell-d (101)	RBE2F (370)	MAPK-Schoeberl (309)	PID (21,000)
4-cut sets	0.03s (27)	0.06s (57)	0.1s (34)	39s (37)
6-cut sets	0.03s (27)	0.76s (334)	0.5s (43)	2.6h (1257)


[Paulevé et al at CAV 2013]

Bifurcations for reachability

Global state graph

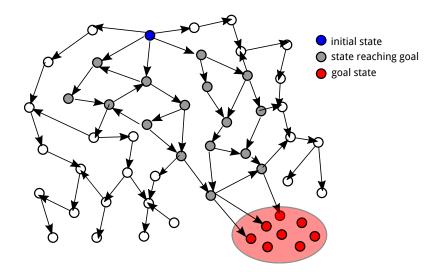
Bifurcations for reachability



- Identify when and how a system loses a capability.
- Not for control as is: bifurcation transition may be necessary for goal.
- ASP implementation combining necessary and sufficient conditions on reachability:

Under-approximation of bifurcations; complexity: NP

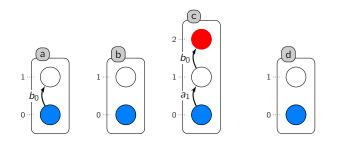
Joint work with L. F. Fitime, C. Guziolowski, O. Roux [WCB'16]


Bifurcations for reachability Experiments


[Abou-Jaoudé et al, Frontiers in Bioengineering and Biotechnology, 2015] 101 automata, 381 local transitions

<i>s</i> ₀	Goal	Nb states	$ t_b $	Time
th17	$RORGT_1$	$pprox 4 \cdot 10^9$	8	29.04 <i>s</i>
	$BCL6_1$	$\sim 4 \cdot 10^{\circ}$	4	26.64 <i>s</i>
HTG	$BCL6_1$	ко	6	61.9 <i>s</i>
	$GATA3_1$	RO	7	34.16 <i>s</i>

Goal-oriented reduction


Goal-oriented reduction

- Preserves all minimal traces to goal
- Low complexity: poly. with local transition, exp. with nb states per automaton (typically 2 to 4)

[Paulevé at CMSB 2016]

Goal-oriented reduction

- Preserves all minimal traces to goal
- Low complexity: poly. with local transition, exp. with nb states per automaton (typically 2 to 4)

[Paulevé at CMSB 2016]

Goal-oriented reduction Experiments

For each model: select an initial state; select a goal (activation of a node).

\$ pint-export -i model.an --reduce-for-goal g=1 -o reduced.an \$ pint-nusmv -i reduced.an g=1

			Verification of goal reachability			
Model	T	# states	NuSMV (EF g)		its-reach	
VPC (88)	332	КО	KO		1s	50Mb
VPC (00)	219	$1.8\cdot10^9$	236s	156Mb	0.8s	21Mb
TCell-d (101)	384	$pprox 2.7\cdot 10^8$	3s	40Mb	0.5s	24Mb
profile 1	0	1				
TCell-d (101)	384	КО	КО		0.5s	23Mb
profile 2	161	75,947,684	474s	260Mb	0.3s	19Mb
EGF-r (104)	378	$pprox 2.7 \cdot 10^{16}$	КО		1.36s	60Mb
LGF-F (104)	69	62,914,560	11s	33Mb	0.3s	17Mb
RBE2F (370)	742	КО	KO		КО	
	56	2,350,494	5s	377Mb	5s	170Mb

In all cases, reduction step took less than 0.1s

Goal-oriented reduction Experiments

Verification of cut sets

- requires all the minimal traces
- cut set verification: not E [$(a \neq 1 \land b \neq 1)$ U g = 1]

\$ pint-export -i model.an --reduce-for-goal g=1 -o reduced.an \$ pint-nusmv -i reduced.an --is-cutset a=1,b=1 g=1

	Wnt (32)	TCell-r (40)	EGF-r (104)	TCell-d (101)	RBE2F (370)
NuSMV	44s 55Mb	KO	KO	KO	КО
	9.1s 27Mb	2.4s 34Mb	13s 33Mb	600s 360Mb	6s 29Mb
its-ctl	105s 2.1Gb	492s 10Gb	KO	KO	КО
	16s 720Mb	11s 319Mb	21s 875Mb	ко	179s 1.8Gb

Conclusion

Summary

- Automata networks (generalize logical networks); asynchronous semantics
- Avoid concrete reachability verification.
- Use to a variety of bio-inspired problems: reachability, cut sets, bifurcations
- Tractable on very large networks with guaranteed results.

Methodology

Intuition: exploit the low scope of transitions in logical networks.

- Static analysis by abstract interpretation
- Intermediate representation (Local Casuality Graph) to reason on necessary/sufficient conditions
- Implementation mixes algorithms on graphs and SAT (ASP).

What's next

- Over-approximation of cut sets, bifurcations.
- Move towards completeness: embed in exact approaches (notably unfoldings, model-checking).
- Use for predicting targets for cellular reprogramming.

Around Reachability in Automata Networks

Loïc Paulevé

LRI, CNRS / Université Paris-Sud, Orsay, France — Biolnfo team loic.pauleve@lri.fr http://loicpauleve.name

Journées annuelles GT BIOSS - 1-2 Juillet 2016

CNRS MASTODONS