Capturing and Reducing Dynamics of Large-scale Automata Networks

Loïc Paulevé

LRI, CNRS / Université Paris-Sud, Orsay, France — BioInfo team loic.pauleve@lri.fr http://loicpauleve.name

March 26, 2015 - IBISC, Evry

Biological Interaction Networks

Biological Interaction Networks

Biological Interaction Networks

Biological Motivations

Prediction

- Cell response w.r.t. signal+environment
- Long-term behaviours (differentiation)

Control

- Mutations for modifying cell response
- Re-differentiation

Biological Motivations

Prediction

- Cell response w.r.t. signal+environment
- Long-term behaviours (differentiation)

Control

- Mutations for modifying cell response
- Re-differentiation

- Interacting Entities having simplistic behaviour (e.g.: happy/sad)
- Positive or negative influences
- Dynamical system: state of entities evolve with time
- Complex system: locally simple, emerging properties hard to predict

- Interacting Entities having simplistic behaviour (e.g.: happy/sad)
- Positive or negative influences
- Dynamical system: state of entities evolve with time
- Complex system: locally simple, emerging properties hard to predict

- Interacting Entities having simplistic behaviour (e.g.: happy/sad)
- Positive or negative influences
- Dynamical system: state of entities evolve with time
- Complex system: locally simple, emerging properties hard to predict

- Interacting Entities having simplistic behaviour (e.g.: happy/sad)
- Positive or negative influences
- Dynamical system: state of entities evolve with time
- Complex system: locally simple, emerging properties hard to predict

- Interacting Entities having simplistic behaviour (e.g.: happy/sad)
- Positive or negative influences
- Dynamical system: state of entities evolve with time
- Complex system: locally simple, emerging properties hard to predict

- Interacting Entities having simplistic behaviour (e.g.: happy/sad)
- Positive or negative influences
- Dynamical system: state of entities evolve with time
- Complex system: locally simple, emerging properties hard to predict

Qualitative approach

- Interacting Entities having simplistic behaviour (e.g.: happy/sad)
- Positive or negative influences
- Dynamical system: state of entities evolve with time
- Complex system: locally simple, emerging properties hard to predict

Qualitative approach

- Interacting Entities having simplistic behaviour (e.g.: happy/sad)
- Positive or negative influences
- Dynamical system: state of entities evolve with time
- Complex system: locally simple, emerging properties hard to predict

E.g., Signalling Networks, Gene Regulatory Networks

Formal Methods for Systems Biology

Aim: understand, analyse, control emerging dynamics.

Formal Methods for Systems Biology

Aim: understand, analyse, control emerging dynamics.

Formal Methods for Systems Biology

Aim: understand, analyse, control emerging dynamics.

Example in Boolean case

$$f^{a}(x) = 0$$

$$f^{b}(x) = x[a] \land \neg x[b]$$

$$f^{c}(x) = \neg x[b] \land (x[a] \lor x[c])$$

$$\langle a, b, c \rangle$$
 $\langle 1, 0, 0 \rangle$

[René Thomas in Journal of Theoritical Biology, 1973] [A. Richard, J.-P. Comet, G. Bernot in Modern Formal Methods and Applications, 2006]

Example in Boolean case

$$f^{a}(x) = 0$$

$$f^{b}(x) = x[a] \land \neg x[b]$$

$$f^{c}(x) = \neg x[b] \land (x[a] \lor x[c])$$

[René Thomas in Journal of Theoritical Biology, 1973] [A. Richard, J.-P. Comet, G. Bernot in Modern Formal Methods and Applications, 2006]

Example in Boolean case

$$f^{a}(x) = 0$$

$$f^{b}(x) = x[a] \land \neg x[b]$$

$$f^{c}(x) = \neg x[b] \land (x[a] \lor x[c])$$

[René Thomas in Journal of Theoritical Biology, 1973] [A. Richard, J.-P. Comet, G. Bernot in Modern Formal Methods and Applications, 2006]

Example in Boolean case

$$f^{a}(x) = 0$$

$$f^{b}(x) = x[a] \land \neg x[b]$$

$$f^{c}(x) = \neg x[b] \land (x[a] \lor x[c])$$

[René Thomas in Journal of Theoritical Biology, 1973] [A. Richard, J.-P. Comet, G. Bernot in Modern Formal Methods and Applications, 2006]

Example in Boolean case

$$f^{a}(x) = 0$$

$$f^{b}(x) = x[a] \land \neg x[b]$$

$$f^{c}(x) = \neg x[b] \land (x[a] \lor x[c])$$

[René Thomas in Journal of Theoritical Biology, 1973] [A. Richard, J.-P. Comet, G. Bernot in Modern Formal Methods and Applications, 2006]

Example in Boolean case

$$f^{a}(x) = 0$$

$$f^{b}(x) = x[a] \land \neg x[b]$$

$$f^{c}(x) = \neg x[b] \land (x[a] \lor x[c])$$

[René Thomas in Journal of Theoritical Biology, 1973] [A. Richard, J.-P. Comet, G. Bernot in Modern Formal Methods and Applications, 2006]

Formal Analysis of Dynamics

Reachability

- From given initial condition(s) (e.g. (1, 0, 0)),
- is it possible to activate component b and then c?

Control

- From given initial condition(s) (e.g. (1, 0, 0)),
- how to prevent the activation of component c?

Attractors

- What are the reachable long-term behaviours?
- How to jump from one attractor to another?

Issues with Large Interaction Networks

Issues with Large Interaction Networks

Modelling issues

- Partially-specified interactions.
- Boolean networks need to be fully specified (deterministic Boolean function f_a).
- Intractable enumeration of all models.

Analysis issues

- Combinatorial explosion of behaviours (e.g., 2¹⁰⁰ - 10³⁰ to 2^{10 000} - 10³⁰⁰⁰ states).
- Large range of initial conditions to consider.
- Difficult to extract comprehensive proofs of (im)possibility.

Contributions

Scalable analysis of transient dynamics of automata networks

Static analysis

Model → Abstraction → Decision (possibly incomplete)

Key ingredients

- Concurrent systems
- Transition-centered specification
- · Causality analysis and abstraction

Results

- Prevent raw model-checking (PSPACE-complete)
- Derive necessary or sufficient conditions from abstractions

Allow coupling with exhaustive analysis

Outline

1 Automata Networks

2 Overview of results on reachability analysis

3 Local Causality Analysis
Local Causality Graph
Necessary conditions for reachability

4 Goal-oriented reduction

Outline

1 Automata Networks

2 Overview of results on reachability analysis

Local Causality Analysis
 Local Causality Graph
 Necessary conditions for reachability

4 Goal-oriented reduction

a:
$$\ell_1 = \{c_0\}$$
 $\ell_2 = \{b_0\}$ $\ell_3 = \emptyset$ b: $\ell_4 = \{a_2, c_1\}$ $\ell_5 = \{a_0\}$ c: $\ell_6 = \{b_0\}$ $\ell_7 = \{b_0, a_1\}$ $\ell_8 = \{b_1\}$

a:
$$\ell_1 = \{c_0\}$$
 $\ell_2 = \{b_0\}$ $\ell_3 = \emptyset$
b: $\ell_4 = \{a_2, c_1\}$ $\ell_5 = \{a_0\}$
c: $\ell_6 = \{b_0\}$ $\ell_7 = \{b_0, a_1\}$ $\ell_8 = \{b_1\}$

a:
$$\ell_1 = \{c_0\}$$
 $\ell_2 = \{b_0\}$ $\ell_3 = \emptyset$
b: $\ell_4 = \{a_2, c_1\}$ $\ell_5 = \{a_0\}$
c: $\ell_6 = \{b_0\}$ $\ell_7 = \{b_0, a_1\}$ $\ell_8 = \{b_1\}$

a:
$$\ell_1 = \{c_0\}$$
 $\ell_2 = \{b_0\}$ $\ell_3 = \emptyset$
b: $\ell_4 = \{a_2, c_1\}$ $\ell_5 = \{a_0\}$
c: $\ell_6 = \{b_0\}$ $\ell_7 = \{b_0, a_1\}$ $\ell_8 = \{b_1\}$

c:

a:
$$\ell_1 = \{c_0\}$$
 $\ell_2 = \{b_0\}$ $\ell_3 = \emptyset$
b: $\ell_4 = \{a_2, c_1\}$ $\ell_5 = \{a_0\}$
c: $\ell_6 = \{b_0\}$ $\ell_7 = \{b_0, a_1\}$ $\ell_8 = \{b_1\}$

a:
$$\ell_1 = \{c_0\}$$
 $\ell_2 = \{b_0\}$ $\ell_3 = \emptyset$
b: $\ell_4 = \{a_2, c_1\}$ $\ell_5 = \{a_0\}$
c: $\ell_6 = \{b_0\}$ $\ell_7 = \{b_0, a_1\}$ $\ell_8 = \{b_1\}$

1. $f^a(x) = x[b] \land x[c]$ transitions:

$$a_0 \rightarrow a_1$$
: $b_1 \wedge c_1$
 $a_1 \rightarrow a_0$: $b_0 \vee c_0$

1. $f^a(x) = x[b] \land x[c]$ transitions:

$$a_0 \rightarrow a_1$$
: $b_1 \wedge c_1$
 $a_1 \rightarrow a_0$: $b_0 \vee c_0$

1. $f^a(x) = x[b] \land x[c]$ transitions:

$$a_0 \rightarrow a_1$$
: $b_1 \wedge c_1$
 $a_1 \rightarrow a_0$: $b_0 \vee c_0$

1.
$$f^a(x) = x[b] \land x[c]$$
 transitions:

$$a_0 \rightarrow a_1$$
: $b_1 \wedge c_1$
 $a_1 \rightarrow a_0$: $b_0 \vee c_0$

1.
$$f^a(x) = x[b] \land x[c]$$
 transitions:

$$a_0 \rightarrow a_1$$
: $b_1 \wedge c_1$
 $a_1 \rightarrow a_0$: $b_0 \vee c_0$

2. Non-deterministic f^a transitions:

$$a_0 \rightarrow a_1$$
: $b_1 \lor c_1$
 $a_1 \rightarrow a_0$: $b_0 \lor c_0$

Loïc Paulevé

1. $f^a(x) = x[b] \land x[c]$ transitions:

$$a_0 \rightarrow a_1$$
: $b_1 \wedge c_1$
 $a_1 \rightarrow a_0$: $b_0 \vee c_0$

2. Non-deterministic f^a transitions:

$$a_0 \rightarrow a_1$$
: $b_1 \lor c_1$
 $a_1 \rightarrow a_0$: $b_0 \lor c_0$

1. $f^a(x) = x[b] \land x[c]$ transitions:

$$a_0 \rightarrow a_1$$
: $b_1 \wedge c_1$
 $a_1 \rightarrow a_0$: $b_0 \vee c_0$

2. Non-deterministic f^a transitions:

$$a_0 \rightarrow a_1$$
: $b_1 \lor c_1$
 $a_1 \rightarrow a_0$: $b_0 \lor c_0$

1. $f^a(x) = x[b] \land x[c]$ transitions:

$$a_0 \rightarrow a_1$$
: $b_1 \wedge c_1$
 $a_1 \rightarrow a_0$: $b_0 \vee c_0$

2. Non-deterministic f^a transitions:

$$a_0 \rightarrow a_1$$
: $b_1 \lor c_1$
 $a_1 \rightarrow a_0$: $b_0 \lor c_0$

1. $f^a(x) = x[b] \land x[c]$ transitions:

$$a_0 \rightarrow a_1$$
: $b_1 \wedge c_1$
 $a_1 \rightarrow a_0$: $b_0 \vee c_0$

2. Non-deterministic f^a transitions:

$$a_0 \rightarrow a_1$$
: $b_1 \lor c_1$
 $a_1 \rightarrow a_0$: $b_0 \lor c_0$

Outline

- 1 Automata Networks
- 2 Overview of results on reachability analysis
- Local Causality Analysis
 Local Causality Graph
 Necessary conditions for reachability
- 4 Goal-oriented reduction

Cut Sets for Reachability

Reachability Analysis with Abstract Interpretation

- Over- and under-approximations of local rechability properties.
- Low complexity: poly(nb. automata) × exp(nb of procs in one automaton)
 ⇒ efficient with a small number of processes per automaton, while a very large number of automata can be handled.

Reachability Analysis with Abstract Interpretation

- Over- and under-approximations of local rechability properties.
- Low complexity: poly(nb. automata) × exp(nb of procs in one automaton)
 ⇒ efficient with a small number of processes per automaton, while a very large number of automata can be handled.

• Key local states: necessary for reachability satisfiability (control).

Applications

Large signalling networks - reachability

Model	NuSMV	ITS	PINT
EGFR (20)	[3s-KO]	[1s-150s]	0.007s
TCR (40)	[1s-KO]	[0.6s-KO]	0.004s
TCR (94)	KO	KO	0.030s
EGFR (104)	KO	[9mn-KO]	0.050s

- Range over initial states / reachability prop.
- In those cases: always conclusive.

 $TGF-\beta$ signalling - ANR BioTempo, N. Theret (INSERM), G. Andrieux (IRISA)

- 9,000 interaction components
- Identification of key processes for a particular activation
- Dynamics: 2^{9000} states, PINT: reachability < 1s, key components < 10min

⇒ first formal analysis of dynamics at such a large scale

Loïc Paulevé 20/33

Outline

Automata Networks

Overview of results on reachability analysis

3 Local Causality Analysis
Local Causality Graph
Necessary conditions for reachability

4 Goal-oriented reduction

Local Causality

local-cause
$$(a_0 \to^* a_2) = \{a_0 \xrightarrow{b_0} a_1 \xrightarrow{c_1} a_2, a_0 \xrightarrow{b_2} a_2\}$$

local-cause $^\#(a_0 \to^* a_2) = \{\{b_0, c_1\}, \{b_2\}\}$

Local Causality

local-cause(
$$a_0 \rightarrow^* a_2$$
) = $\{a_0 \xrightarrow{b_0} a_1 \xrightarrow{c_1} a_2, a_0 \xrightarrow{b_2} a_2\}$
local-cause[#]($a_0 \rightarrow^* a_2$) = $\{\{b_0, c_1\}, \{b_2\}\}$

For any trace π starting at some global state s with $a_0 \in s$ and reaching a_2 :

- either $a_0 \xrightarrow{b_0} a_1 \xrightarrow{c_1} a_2$ or $a_0 \xrightarrow{b_2} a_2$ is a sub-trace of π ;
- either b_1 and c_0 , or b_2 are reached before a_2 in π .

- Causality of a2.
- Initial context $\varsigma = \{a \mapsto \{0\}; b \mapsto \{0\}; c \mapsto \{0, 1\}; d \mapsto \{0\}\}.$

- Causality of a2.
- Initial context $\varsigma = \{a \mapsto \{0\}; b \mapsto \{0\}; c \mapsto \{0, 1\}; d \mapsto \{0\}\}.$

- Causality of a2.
- Initial context $\varsigma = \{a \mapsto \{0\}; b \mapsto \{0\}; c \mapsto \{0, 1\}; d \mapsto \{0\}\}.$

- Causality of a2.
- Initial context $\varsigma = \{a \mapsto \{0\}; b \mapsto \{0\}; c \mapsto \{0, 1\}; d \mapsto \{0\}\}.$

- Causality of a2.
- Initial context $\varsigma = \{a \mapsto \{0\}; b \mapsto \{0\}; c \mapsto \{0, 1\}; d \mapsto \{0\}\}.$

Objective completeness criteria

Objective is impossible from any state if at least one local state of each solution is disabled.

E.g. $a_0 \rightarrow^* a_2$ is impossible in $\mathcal{M} \ominus \{b_2, b_0\}$ and in $\mathcal{M} \ominus \{b_2, c_1\}$

Loïc Paulevé 23/33

Necessary conditions for reachability

Example

Necessary condition for d_2 reachability from ς :

There exists a traversal of the LCG s.t.:

- objective → follow at least one solution;
- local state → follow all objectives;
- no cycle.

(Complexity: poly(nb. autotomata) + exp(nb. local states per automaton))

Loïc Paulevé 24/33

Necessary conditions for reachability

Example

Necessary condition for d_2 reachability from ς :

There exists a traversal of the LCG s.t.:

- objective → follow at least one solution;
 - local state → follow all objectives;
- no cycle.

(Complexity: poly(nb. autotomata) + exp(nb. local states per automaton))

Loïc Paulevé 24/33

Outline

1 Automata Networks

2 Overview of results on reachability analysis

Local Causality Analysis
 Local Causality Graph
 Necessary conditions for reachability

4 Goal-oriented reduction

Goal-oriented reduction Motivations

Local causality analysis in previous work...

- ... decide efficiently reachability properties (and cut sets)
- ... but can be inconclusive (abstractions).

We may still want to do exhaustive explorations of the state space. . .

- ... to ensure conclusiveness
- ... to ensure that we are not missing cut-sets for reachability
- . . . to do any more precise analysis.

Can local causality analysis drives exhaustive analysis of the state space?

Loïc Paulevé 26/33

Model reduction

Model reductions

- merge/remove components/transitions,
- try to preserve some properties.

Goal-oriented reduction of automata networks

- dedicated to a given reachability property (reach a_i , then b_i , ...);
- reduction by removing transitions;
- conserve all minimal traces satisfying a reachability property.

Minimal traces (sequences of transitions)

A trace $\pi \vDash P$ is minimal w.r.t. P iff there is no sub-trace $\pi' \subsetneq \pi$ s.t. $\pi' \vDash P$.

Examples for $P = \text{reach } a_i$:

- $b_0 \xrightarrow{c_0} b_1$, $c_0 \xrightarrow{b_1} c_1$, $a_0 \xrightarrow{b_1, c_1} a_i$ (YES)
- $b_0 \xrightarrow{c_0} b_1$, $c_0 \xrightarrow{b_1} c_1$, $d_0 \xrightarrow{c_1} d_1$, $a_0 \xrightarrow{b_1, c_1} a_i$ (NO)
- $\bullet \ b_0 \xrightarrow{c_0} b_1, c_0 \xrightarrow{b_1} c_1, b_1 \xrightarrow{a_0} b_0, d_0 \xrightarrow{c_1} d_1, b_0 \xrightarrow{d_1} b_1, a_0 \xrightarrow{b_1, c_1} a_i \ (\mathsf{NO})$

Loïc Paulevé 27/33

Model reduction

Model reductions

- merge/remove components/transitions,
- try to preserve some properties.

Goal-oriented reduction of automata networks

- dedicated to a given reachability property (reach a_i , then b_i , ...);
- reduction by removing transitions;
- conserve all minimal traces satisfying a reachability property.

Minimal traces (sequences of transitions)

A trace $\pi \vDash P$ is minimal w.r.t. P iff there is no sub-trace $\pi' \subsetneq \pi$ s.t. $\pi' \vDash P$.

Examples for $P = \text{reach } a_i$:

- $b_0 \xrightarrow{c_0} b_1$, $c_0 \xrightarrow{b_1} c_1$, $a_0 \xrightarrow{b_1, c_1} a_i$ (YES)
- $b_0 \xrightarrow{c_0} b_1$, $c_0 \xrightarrow{b_1} c_1$, $\mathbf{d_0} \xrightarrow{\mathbf{c_1}} \mathbf{d_1}$, $a_0 \xrightarrow{b_1, c_1} a_i$ (NO)
- $b_0 \xrightarrow{c_0} b_1$, $c_0 \xrightarrow{b_1} c_1$, $b_1 \xrightarrow{a_0} b_0$, $d_0 \xrightarrow{c_1} d_1$, $b_0 \xrightarrow{d_1} b_1$, $a_0 \xrightarrow{b_1, c_1} a_i$ (NO)

Loïc Paulevé 27/33

Model reduction

Model reductions

- merge/remove components/transitions,
- try to preserve some properties.

Goal-oriented reduction of automata networks

- dedicated to a given reachability property (reach a_i , then b_i , ...);
- reduction by removing transitions;
- conserve all minimal traces satisfying a reachability property.

Minimal traces (sequences of transitions)

A trace $\pi \vDash P$ is minimal w.r.t. P iff there is no sub-trace $\pi' \subsetneq \pi$ s.t. $\pi' \vDash P$.

Examples for $P = \text{reach } a_i$:

- $b_0 \xrightarrow{c_0} b_1$, $c_0 \xrightarrow{b_1} c_1$, $a_0 \xrightarrow{b_1, c_1} a_i$ (YES)
- $b_0 \xrightarrow{c_0} b_1$, $c_0 \xrightarrow{b_1} c_1$, $d_0 \xrightarrow{c_1} d_1$, $a_0 \xrightarrow{b_1, c_1} a_i$ (NO)
- $b_0 \xrightarrow{c_0} b_1$, $c_0 \xrightarrow{b_1} c_1$, $b_1 \xrightarrow{a_0} b_0$, $d_0 \xrightarrow{c_1} d_1$, $b_0 \xrightarrow{d_1} b_1$, $a_0 \xrightarrow{b_1, c_1} a_i$ (NO)

Loïc Paulevé 27/33

Reduction for single local reachability

Sketch

- $oldsymbol{0}$ Compute LCG $\mathcal G$ from initial context for given local reachability property
- Remove impossible objectives
- 3 Extends its context with local states nodes + intermediates given by local-cause
- **4** Repeat until fixpoint $\rightarrow \lceil \mathcal{G} \rceil$
- \Rightarrow keep only transitions in $\bigcup \{ tr(local-cause(a_i \rightarrow^* a_j)) \mid a_i \rightarrow^* a_j \in \lceil \mathcal{G} \rceil \}$

Loïc Paulevé 28/33

Reduction for single local reachability

Sketch

- **1** Compute LCG \mathcal{G} from initial context for given local reachability property
- Remove impossible objectives
- Sextends its context with local states nodes + intermediates given by local-cause
- **4** Repeat until fixpoint $\rightarrow [\mathcal{G}]$
- \Rightarrow keep only transitions in $\bigcup \{ \text{tr}(\text{local-cause}(a_i \rightarrow^* a_j)) \mid a_i \rightarrow^* a_j \in \lceil \mathcal{G} \rceil \}$

Loïc Paulevé 28/33

Reduction for single local reachability

Sketch

- $oldsymbol{0}$ Compute LCG $\mathcal G$ from initial context for given local reachability property
- Remove impossible objectives
- 3 Extends its context with local states nodes + intermediates given by local-cause
- **4** Repeat until fixpoint $\rightarrow [G]$
- \Rightarrow keep only transitions in $\bigcup \{ tr(local-cause(a_i \rightarrow^* a_j)) \mid a_i \rightarrow^* a_j \in \lceil \mathcal{G} \rceil \}$

Loïc Paulevé 28/33

Goal-oriented reduction

Theorem

Given an AN $\mathcal{A} = (\Sigma, S, T)$, a global state $s \in S$, and one automaton local state a_i , for all minimal trace π from s to a_i , $\operatorname{tr}(\pi) \subset \operatorname{tr}(\lceil \mathcal{G} \rceil)$.

Consequence

The AN $\mathcal{A} = (\Sigma, S, \text{tr}(\lceil \mathcal{G} \rceil))$ conserves all minimal traces for reaching a_i from s.

Loïc Paulevé 29/33

Results

Preliminary benchmarks with single reachability

		NuSMV		115			
Model		# tr	time	mem	time	mem	# states
Egf-r (20)	normal	68	0.1s	15Mb	0.35s	19Mb	4.200
	reduced	43	0.03s	11Mb	0.13s	8Mb	722
Egf-r (104)	normal	378	75s	2.1Gb	0.8s	750Mb	$\approx 10^7$
profile 1	reduced	0	-	-	-	-	1
Egf-r (104)	normal	378	KO	KO	540s	1.5Gb	$> 8.10^{14}$
profile 2	reduced	211	52s	100Mb	3.4s	100Mb	$\approx 6.10^7$
TCell-r (94)	normal	217	KO	KO	KO	KO	?
	reduced	42	10s	190Mb	0.25s	15Mb	60.000

For all cases, reduction step took between 0.01 and 0.1s.

Conclusion

Analysis of transient dynamics

- Understand what is reachable from particular states
- Necessary for capturing key intermediate components
- Difficult: model-checking is PSPACE-complete

Local causality abstractions in Automata Networks

- Exploit concurrency in transition-centered models
- Low complexity tractable on very large networks
- Most analyses applies to any updating schedule

Goal-oriented reduction

- Intertwining between static and dynamics analysis
- Drives the exploration of the state space
- More to come: on-the-fly reduction, application for model identification, etc.

SASB'15

6th International Workshop on Static Analysis and Systems Biology

8 September 2015 - Saint-Malo (France) https://www.lri.fr/sasb2015/

Scope:

- Quantitative and qualitative models
- · Topology vs dynamics
- Model reduction
- · Abstract interpreration frameworks
- · Practical methods for tackling biological models..

Program Co-Chairs

- Loïc Paulevé, CNRS/LRI, Univ. Paris-Sud, France
- · Nathalie Théret, INSERM, Rennes, France

Program Committee

- Reka Albert, Pennsylvania State University, USA
- Jérome Feret, Inria/École Normale Sup., France
- Giuditta Franco, University of Verona, Italy
- Johnatan Hayman, University of Cambridge, UK
- · Thomas Hinze, University of Jena, Germany

- Cédric Lhoussaine. Université de Lille. France
- · Gethin Norman, University of Glasgow, UK
- Tatjana Petrov, IST Austria
- David Safranek, Masaryk Univ., Czech Republic
- Thomas Sauter, University of Luxembourg
- Sylvain Sené, Aix-Marseille Université, France
- Andrei Zinovyev, Institut Curie, France
- Paolo Zuliani, Newcastle University, UK

Deadline for paper submission: 29th May 2015 (proceedings in ENTCS)

Capturing and Reducing Dynamics of Large-scale Automata Networks

Questions?

Loïc Paulevé 33/33