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Scalable Formal Analysis of Dynamics of Biological Networks: Introduction

Formal Methods for Systems Biology
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- strong generalization
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Scalable Formal Analysis of Dynamics of Biological Networks: Introduction

Interaction Networks
E.g., Regulatory or Signalling Networks
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Interaction Networks
E.g., Regulatory or Signalling Networks
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Components
Genes, proteins, complexes,
. . .

Activations
Positive influence (a increase
may promote c increase).
Inhibitions
Negative influence (b increase
may promote d decrease).

Typical settings
100 to +10,000 components
Few information on kinetics
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Scalable Formal Analysis of Dynamics of Biological Networks: Introduction

Qualitative models

• Assume a quantization of the species population/concentration.

• Have a finite discrete state space (typically 2n states).

• Non-deterministic dynamics.
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Scalable Formal Analysis of Dynamics of Biological Networks: Introduction

Qualitative Models for Interaction Networks
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Scalable Formal Analysis of Dynamics of Biological Networks: Introduction

Issues with Large Interaction Networks

Modelling issues

• Partially-specified interactions.

• Boolean networks need to be fully specified
(deterministic Boolean function fa).

• Intractable enumeration of all models.

b

c

d

a

Analysis issues

• Combinatorial explosion of behaviours
(e.g. 2100 to 210 000 states).

• Large range of initial conditions to consider.

• Difficult to extract comprehensive proofs of (im)possibility.

Failure of classical model-checking techniques,
Need new formal approaches to capture dynamics of large networks
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Scalable Formal Analysis of Dynamics of Biological Networks: Introduction

Static Analysis based on Interaction Graph

a b

Relationships between the interaction graph and dynamical properties:

• Multi-stationnarity requires a positive circuit (René Thomas conjecture) [Soule in

ComPlexUs, 2003] [Richard, Comet in Discrete Appl. Math., 2007].

• Sustained oscillations require a negative circuit (René Thomas conjecture) [Remy,

et al. in Adv. Appl. Math., 2008] [Richard in Adv. Appl. Math., 2010].

• The maximum number of fixed points can be characterized [Aracena in Bul. of

Mathematical Biology, 2008]; [Richard in Discrete Appl. Math., 2009].

• Topological Fixed Points [Paulevé, Richard in CRAS 2010].

• Difference between synchronous/asynchronous update [Noual, Regnault, Sené]

• etc.

(See [Paulevé, Richard at SASB’11] for a short survey).
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Outline

1 Discrete Modelling with the Process Hitting

2 Analysing Dynamics
Graph of Local Causality
Reachability
Cut Sets for Reachability

3 Hybrid Modelling
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Scalable Formal Analysis of Dynamics of Biological Networks: Discrete Modelling with the Process Hitting

The Process Hitting Framework
[Paulevé, Magnin, Roux in TCSB 2011]
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• Automata: a,b,z; Processes: a0, a1, b0, b1, z0, z1, z2;

• Actions: a0 hits b1 to make it bounce to b0, . . . ;

• States: 〈a1, b1, z2〉, 〈a0, b1, z2〉, 〈a0, b0, z2〉, . . . ;
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Scalable Formal Analysis of Dynamics of Biological Networks: Discrete Modelling with the Process Hitting

The Process Hitting
Why a new framework?

Features of the Process Hitting
• Simple formalism; but enough to model networks dynamics.
• Special class of Asynchronous Automata Networks (or Petri Nets).
• A transition is triggered by only one process (biological or logical).

Advantages for Modelling
• Atomic description of transitions.
• Allows to model networks with partial knowledge on cooperations
⇒ encodes non-deterministic Boolean functions; e.g.:

fa(x) =

{
1 if xb = 1 ∨ xc = 1
0 if xb = 0 ∨ xc = 0

Advantages for Analysis
• Easy fixed point derivation (not shown in this talk).
• Very efficient causality analysis;
• allows highly scalable reachability analysis.

Limitations
• Synchrone update is complex to encode (but possible);
• Over-approximation approach: focus mainly on necessary conditions
(but work in progress for the counterpart).

Loïc Paulevé 11/36



Scalable Formal Analysis of Dynamics of Biological Networks: Discrete Modelling with the Process Hitting

Generalised Dynamics of Interaction Networks

a

b c

Dynamics of the
real system

All possible dynamics

constraints

Dynamics over-approximation

• A component can not increase if none effective activator is present.

• A component can not decrease if none effective inhibitor is present.
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Scalable Formal Analysis of Dynamics of Biological Networks: Discrete Modelling with the Process Hitting

Modelling Regulation with the Process Hitting

Boolean case:
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• Independant regulations, automatic encoding of interaction graphs.

• Without knowledge of cooperation between regulators.
⇒ most permissive dynamics of the network.
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Scalable Formal Analysis of Dynamics of Biological Networks: Discrete Modelling with the Process Hitting

Refining with Cooperation

• Constraint: c0 �c1 when a0 and b1 are present.

• Introduction of a cooperative automata reflecting the state of a and b.
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⇒ The Process Hitting can model any interaction network with partial knowledge on
the cooperations (over-approximation of dynamics).

Loïc Paulevé 14/36



Scalable Formal Analysis of Dynamics of Biological Networks: Discrete Modelling with the Process Hitting

Refining with Cooperation

• Constraint: c0 �c1 when a0 and b1 are present.

• Introduction of a cooperative automata reflecting the state of a and b.

a

0 1

b

0 1

c

0

1

ab

00 01 10 11

⇒ The Process Hitting can model any interaction network with partial knowledge on
the cooperations (over-approximation of dynamics).

Loïc Paulevé 14/36



Scalable Formal Analysis of Dynamics of Biological Networks: Discrete Modelling with the Process Hitting

Refining with Cooperation

• Constraint: c0 �c1 when a0 and b1 are present.

• Introduction of a cooperative automata reflecting the state of a and b.

a

0 1

b

0 1

c

0

1

ab

00 01 10 11

⇒ The Process Hitting can model any interaction network with partial knowledge on
the cooperations (over-approximation of dynamics).

Loïc Paulevé 14/36



Scalable Formal Analysis of Dynamics of Biological Networks: Discrete Modelling with the Process Hitting

Refining with Cooperation

• Constraint: c0 �c1 when a0 and b1 are present.

• Introduction of a cooperative automata reflecting the state of a and b.

a

0 1

b

0 1

c

0

1

ab

00 01 10 11

⇒ The Process Hitting can model any interaction network with partial knowledge on
the cooperations (over-approximation of dynamics).

Loïc Paulevé 14/36



Scalable Formal Analysis of Dynamics of Biological Networks: Discrete Modelling with the Process Hitting

Refining with Cooperation

• Constraint: c0 �c1 when a0 and b1 are present.

• Introduction of a cooperative automata reflecting the state of a and b.

a

0 1

b

0 1

c

0

1

ab

00 01 10 11

⇒ The Process Hitting can model any interaction network with partial knowledge on
the cooperations (over-approximation of dynamics).

Loïc Paulevé 14/36



Scalable Formal Analysis of Dynamics of Biological Networks: Discrete Modelling with the Process Hitting

Abstraction Relationships

Dynamics of the
real system

Generalized dynamics
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Abstraction Relationships

Dynamics of the
real system

Generalized dynamics

PH w/ 1 cooperation

PH w/ all cooperations

Corresponding
Boolean Network
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Scalable Formal Analysis of Dynamics of Biological Networks: Discrete Modelling with the Process Hitting

Toy example
Incoherent feed-forward loop
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Toy example
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Scalable Formal Analysis of Dynamics of Biological Networks: Analysing Dynamics

Outline

1 Discrete Modelling with the Process Hitting

2 Analysing Dynamics
Graph of Local Causality
Reachability
Cut Sets for Reachability

3 Hybrid Modelling
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Looking for Scenarios
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Scalable Formal Analysis of Dynamics of Biological Networks: Analysing Dynamics

Local Causality
Minimal solutions
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Scalable Formal Analysis of Dynamics of Biological Networks: Analysing Dynamics

Graph of Local Causality

d0 �∗ d2

b1 b0

b1 �∗ b1

b2 �∗b1
⊥

b1 �∗ b0

a1

a1 �∗a1

b2 �∗b0
⊥

b2

b1 �∗b2

d1

d0 �∗d1

b2 �∗b2

b0 �∗ b2

d2 Aως , ω = d2, ς = 〈a1, {b1, b2}, c1, d0〉

Legend

Requirement

aj ai �∗ aj

Solution

({bi , cj} ∈ sol(ai �∗ aj ))

ai �∗ aj

bi

cj

Continuity

ai �∗ aj ak �∗ aj

Trivial solution

ai �∗ aj

No solution

ai �∗ aj
⊥
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Scalable Formal Analysis of Dynamics of Biological Networks: Analysing Dynamics

Efficient Reachability Analysis

Abstract interpretation of Process Hitting dynamics

Process Hitting
+ reachability question

Graph of Local Causality

Yes / No /
Maybe

Necessary/sufficient
conditions

Reach ai , then bj , etc.

• Over- and under-approximations of local rechability properties.

• Low complexity: poly(nb. automata) × exp(nb of procs in one automaton)

=⇒ efficient with a small number of processes per automaton, while a
very large number of automata can be handled.

[Mathematical Structures in Computer Science (2012); workshop SASB’10]
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Scalable Formal Analysis of Dynamics of Biological Networks: Analysing Dynamics

Over-approximation of Reachability
Example
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Necessary condition for reaching d2:
There exists a traversal of the GLC s.t.:
• objective → follow at least one solution;

• process → follow all objectives;

• no cycle.

d1 �∗ d2

b2 b0 �∗ b2 d1 d1 �∗ d1

b1 b0 �∗ b1 c1 c0 �∗ c1 a0 a1 �∗ a0⊥

No
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Under-approximation of Reachability
Example
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Sufficient condition for reaching d2:

• GLC’ has no cycle;

• each objective has at least one solution.

d0 �∗d2

d2
b0 b1 �∗b0 a1 a1 �∗a1

b0 �∗b0

b1 b1 �∗b1

b0 �∗b1 c1 c1 �∗c1

Yes
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Sufficient condition for reaching d2:

• GLC’ has no cycle;

• each objective has at least one solution.

d0 �∗d2
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b0 b1 �∗b0 a1 a0 �∗a1
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Inconc
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Applications

• Signalling networks.

• Wide-range of biological/arbitrary reachability analysis.

• Always conclusive.

Model Biocham1 libDDD2 PINT3

EGFR 20 [3s-KO] [1s-150s] 0.007s
TCR 40 [1s-KO] [0.6s-KO] 0.004s
TCR 94 KO KO 0.030s

EGFR 104 KO KO 0.050s

1 http://contraintes.inria.fr/biocham (using NuSMV2)
2 http://move.lip6.fr/software/DDD
3 http://loicpauleve.name/pint
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Cut Sets for Reachability
[Paulevé et al. at CAV’13]
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Set of processes
that if all disabled
break reachability
from given initial states

e.g. {c1, d2}
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Cut Sets for Reachability
[Paulevé et al. at CAV’13]
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Cut Sets for Reachability
[Paulevé et al. at CAV’13]

a

b

c

d

e

f

+

+

-

+ +

-

-
+

a

0

1

b

0

1

c

0

1

d

0

1

2

e

0

1

f

0

1

⇒

Set of processes
that if all disabled
break reachability
from given initial states

e.g. {c1, d2}

Applications
- Potential
control targets
- Refute model if reach-
ability still occurs in the
modified (real) system
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Cut Sets for Reachability

Process Hitting Graph of Local Causality

Cut Sets

Algorithm

• Graph flooding algorithm.

• Computes all cut sets at once: no enumeration of candidates.

• Very efficient with large networks.

Returned cut sets

• All valid (break the concerned reachability).

• Some may be missed, some may be non-minimal.

Loïc Paulevé 26/36



Scalable Formal Analysis of Dynamics of Biological Networks: Analysing Dynamics

Cut Sets Under-approximation
Example

Sketch
• Follow the topological order of GLC.
• SCCs: arbitrary/random order for updating nodes having child modified.
• Always converges.

a3

a1 �∗a3

c2b1

c2 �∗c2

c1 �∗c2

b1 �∗b1

b3

b1 �∗b3

d2 d1 �∗d2 ∅
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Formal analysis of the whole PID

Pathway Interaction Database

• Inductions, inhibitions, transcriptional regulation, complex formations, . . .

• More than 9000 interacting components.

• Large environment (3000 entry-points).

Graph of Local Causality

• From Process Hitting model (Boolean interpretation).

• (Independent) reachability of active SNAIL, active p15INK4b.

• 20 000 nodes, including 5600 processes (biological or cooperative).

Cut N-sets computed

N Exec. time SNAIL1 p15INK4b1
1 0.9s 1 1
2 1.6s +6 +6
3 5.4s +0 +92
4 39s +30 +60
5 8.3m +90 +80
6 2.6h +930 +208
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Outline

1 Discrete Modelling with the Process Hitting

2 Analysing Dynamics
Graph of Local Causality
Reachability
Cut Sets for Reachability

3 Hybrid Modelling
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Introducing Time and Probabilities

Motivations

• Quantifying probability of reachability properties.

• Quantifying time to reach a given state/attractor.

Related work

• Formal frameworks: hybrid automata, continuous-time Markov chains, etc.

• Tools: model-checkers (PRISM, UPPAAL); numerous simulations techniques.

Continuous-time Markov Chains (CTMCs)

• Each transition receives a rate (speed).

• Rates control the probability of taking transitions
P(s → s ′) = rate(s→s ′)∑

s′′ rate(s→s ′′)

• Rates control the duration of transition
dt(s → s ′) ∼ exp(

∑
s ′′ rate(s → s ′′))

Suited for population-counting models, but issues with qualitative models!
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CTMCs for Qualitative Models

Issue

• Transition in qualitative models hides multiple reactions

• ⇒ some transitions may exhibit very low duration variance.

• But the rate entirely controls the variance (exponential distribution).

Proposed solution: Rate + Stochasticity absorption factor [Paulevé et al. IEEE TSE 11]

• Probability and duration can be independently tunned.

• Duration follows an Erlang distribution (non-Markovian setting).

• Allows to encode any confidence interval for the duration.

• Can still be converted to a regular CTMC at the end.

a

0

1

b

0

1 a0→b0 �b1
t

a0→a0 �a1
t

⇒ b1 is reached at a very low probability.
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Ongoing-work: priorities and time-scales

Motivations

• Rates are difficult to estimate.

• Focus on time-scales (qualitative) rather than precise durations.

Approach

• Process Hitting with Priorities.

• Some actions are always taken first, when possible.

• Adapt previous abstract interpretations.

First results, research directions

• Scalable reachability analysis (under-approximation)
[Folschette et al. at CS2Bio’13].

• Take into account priorities for cut sets.
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Summary

The Process Hitting framework

• Particular class of Asynchronous Automata Networks.

• Suited for modelling large interaction networks.

• Allows incomplete knowledge of cooperations
(contrary to classical Boolean/multi-valued networks).

Formal analysis of dynamics

• Addressed in this talk: reachability and cut sets.

• Scalable thanks to abstract interpretation (potentially inconclusive).

• Graph of Local Causality provides comprehensive proofs.

• Over-approximations apply to any Automata Netwoks.

Link with other formalisms

• Any Boolean network can be encoded in Process Hitting.

• Inference of Boolean networks from Process Hitting
[Folschette et al. at CMSB’12].

• Automatic encoding of interaction databases in progress.
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Pint Software
http://loicpauleve.name/pint

Pint

• Textual language for Process Hitting

• Command line utilities for analysis.

Main features

• Reachability analysis.

• Cut set analysis.

• Listing of fixed points (steady states).

• Non-markovian simulator for stochasticity absorption.

• Importation from various formats (CellNetAnalyser, SIF, ginML (partial), etc.)

• Exportation to various formats (PRISM, Biocham, Boolean networks, etc.)

Graphical interface in progress. . .
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CausalEx Software
Coming soon. . .

Graphical interface for exploring Graphs of Local Causality

• Navigation

• Interactive scripting (javascript)

• Algorithm visualization

ACK: Fabienne Hirwa and Jean-Christophe Souplet from the software development team/LRI
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