Efficient Static Analysis of Dynamical Properties using the Process Hitting

10 janvier 2012

Loïc Paulevé

École Polytechnique / LIX (équipe AMIB)
pauleve@lix.polytechnique.fr
http://loicpauleve.name

Work with Morgan Magnin and Olivier (F.) Roux (PhD thesis)

Overview

Context

- Computer science for systems biology.
- Abstract (discrete) modelling.

Problematics

- Scalable formal verification.
- Properties of interest:
 - Fixpoint enumeration.
 - Reachability properties.
 - Control (drug targets).

Overview

Context

- Computer science for systems biology.
- Abstract (discrete) modelling.

Problematics

- Scalable formal verification.
- Properties of interest:
 - Fixpoint enumeration.
 - Reachability properties.
 - Control (drug targets).

The Process Hitting [Paulevé, Magnin, Roux in TCSB 2011]

- Subclass of Communicating Finite State Machines / Petri Nets / etc.
- Suitable to model Biological Regulatory Networks.
- Efficient static analysis of dynamical properties. [Paulevé, Magnin, Roux in MSCS 2012]

Outline

- 1 The Process Hitting
- 2 Static Analysis
 - Fixpoint Enumeration Abstract Interpretation of Successive Reachability Properties Towards Control of Reachability Properties
- 3 Experiments and Comparisons
- 4 Conclusion and Outlook

Outline

- 1 The Process Hitting
- Static Analysis
 Fixpoint Enumeration
 Abstract Interpretation of Successive Reachability Properti
 Towards Control of Reachability Properties
- 3 Experiments and Comparisons
- 4 Conclusion and Outlook

Biological Regulatory Networks

[René Thomas in Journal of Theoretical Biology, 1973

- Sorts: a,b,z; Processes: a₀, a₁, b₀, b₁, z₀, z₁, z₂;
- Actions: a_0 hits b_1 to make it bounce to $b_0, \ldots;$
- States: $\langle a_1, b_1, z_1 \rangle$, $\langle a_0, b_1, z_1 \rangle$, $\langle a_0, b_0, z_1 \rangle$, ...;
- Restriction of Communicating Finite-State Machines (CFSM).

- Sorts: a,b,z; Processes: a₀, a₁, b₀, b₁, z₀, z₁, z₂;
- Actions: a_0 hits b_1 to make it bounce to $b_0, \ldots;$
- States: $\langle a_1, b_1, z_1 \rangle$, $\langle a_0, b_1, z_1 \rangle$, $\langle a_0, b_0, z_1 \rangle$, ...;
- Restriction of Communicating Finite-State Machines (CFSM).

- Sorts: a,b,z; Processes: a₀, a₁, b₀, b₁, z₀, z₁, z₂;
- Actions: a_0 hits b_1 to make it bounce to $b_0, \ldots;$
- States: $\langle a_1, b_1, z_1 \rangle$, $\langle a_0, b_1, z_1 \rangle$, $\langle a_0, b_0, z_1 \rangle$, ...;
- Restriction of Communicating Finite-State Machines (CFSM).

- Sorts: a,b,z; Processes: a₀, a₁, b₀, b₁, z₀, z₁, z₂;
- Actions: a_0 hits b_1 to make it bounce to $b_0, \ldots;$
- States: $\langle a_1, b_1, z_1 \rangle$, $\langle a_0, b_1, z_1 \rangle$, $\langle a_0, b_0, z_1 \rangle$, ...;
- Restriction of Communicating Finite-State Machines (CFSM).

- Sorts: a,b,z; Processes: a₀, a₁, b₀, b₁, z₀, z₁, z₂;
- Actions: a_0 hits b_1 to make it bounce to $b_0, \ldots;$
- States: $\langle a_1, b_1, z_1 \rangle$, $\langle a_0, b_1, z_1 \rangle$, $\langle a_0, b_0, z_1 \rangle$, ...;
- Restriction of Communicating Finite-State Machines (CFSM).

Subclass of Petri Nets

Outline

- 1 The Process Hitting
- 2 Static Analysis

Fixpoint Enumeration Abstract Interpretation of Successive Reachability Properties Towards Control of Reachability Properties

- 3 Experiments and Comparisons
- 4 Conclusion and Outlook

Static Analysis of Process Hittings

Intuition

- Simplicity of the Process Hitting ⇒ models with simple structures.
- Efficient static derivation of dynamical properties.

Static Analysis of Process Hittings

Intuition

- Simplicity of the Process Hitting ⇒ models with simple structures.
- Efficient static derivation of dynamical properties.

Fixed Points

• Reduction to the *n*-cliques of an *n*-partite graph.

Static Analysis of Process Hittings

Intuition

- Simplicity of the Process Hitting ⇒ models with simple structures.
- Efficient static derivation of dynamical properties.

Fixed Points

• Reduction to the *n*-cliques of an *n*-partite graph.

Successive reachability properties EF $a_i \wedge (\text{EF } b_i \wedge \dots)$

- Limited complexity but may be inconclusive (Yes/No/Inconc).
- Abstract interpretation techniques.
- Extraction of key processes (towards control).

Outline

- 1 The Process Hitting
- 2 Static Analysis

Fixpoint Enumeration

Abstract Interpretation of Successive Reachability Properties Towards Control of Reachability Properties

- 3 Experiments and Comparisons
- 4 Conclusion and Outlook

Fixed Points

Paulevé, Magnin, Roux in TCSB 2011

n-cliques are fixed points

Fixed Points

Paulevé, Magnin, Roux in TCSB 2011

n-cliques <u>are</u> fixed points

Fixed Points

Paulevé, Magnin, Roux in TCSB 2011

n-cliques are fixed points

Outline

- 1 The Process Hitting
- 2 Static Analysis

Fixpoint Enumeration

Abstract Interpretation of Successive Reachability Properties

Towards Control of Reachability Properties

- 3 Experiments and Comparisons
- 4 Conclusion and Outlook

$$a_0 \rightarrow c_0 \upharpoonright c_1 :: b_0 \rightarrow d_0 \upharpoonright d_1 :: c_1 \rightarrow b_0 \upharpoonright b_1 :: b_1 \rightarrow d_1 \upharpoonright d_2$$

$$a_0 \rightarrow c_0 \vdash c_1 :: b_0 \rightarrow d_0 \vdash d_1 :: c_1 \rightarrow b_0 \vdash b_1 :: b_1 \rightarrow d_1 \vdash d_2$$

$$a_0 \rightarrow c_0 \upharpoonright c_1 :: b_0 \rightarrow d_0 \upharpoonright d_1 :: c_1 \rightarrow b_0 \upharpoonright b_1 :: b_1 \rightarrow d_1 \upharpoonright d_2$$

Loïc Paulevé

$$a_0 \rightarrow c_0 \ r \ c_1 :: b_0 \rightarrow d_0 \ r \ d_1 :: c_1 \rightarrow b_0 \ r \ b_1 :: b_1 \rightarrow d_1 \ r \ d_2$$

$$a_0 \rightarrow c_0 \upharpoonright c_1 :: b_0 \rightarrow d_0 \upharpoonright d_1 :: c_1 \rightarrow b_0 \upharpoonright b_1 :: b_1 \rightarrow d_1 \upharpoonright d_2$$

Static Analysis of Successive Reachability Properties

[Paulevé, Magnin, Roux in MSCS 2012]

Successive Reachability \mathcal{R}

- Given a Process Hitting \mathcal{PH} with an initial state,
- is it possible to reach the process a_i ? ...
- then the process b_i ? ...etc.

Static Analysis of Successive Reachability Properties

[Paulevé, Magnin, Roux in MSCS 2012]

Successive Reachability \mathcal{R}

- Given a Process Hitting \mathcal{PH} with an initial state,
- is it possible to reach the process a_i ? ...
- then the process b_i ? ... etc.

Difficulties: combinatorial explosion of dynamics to explore.

Static Analysis of Successive Reachability Properties

[Paulevé, Magnin, Roux in MSCS 2012]

Successive Reachability ${\cal R}$

- Given a Process Hitting \mathcal{PH} with an initial state,
- is it possible to reach the process a_i ? ...
- then the process b_i ? ...etc.

Difficulties: combinatorial explosion of dynamics to explore.

Chosen approach

Under-approximations \mathcal{PH} satisfies $\mathcal{Q} \Longrightarrow \mathcal{R}$ is possible.

Requirement: checking $\mathcal{P}(\mathcal{Q})$ is fast.

Abstract Interpretation of Scenarios

Scenarios – Successively playable actions.

- Context For each sort, subset of initial processes.
 - E.g. $\varsigma = \langle a_0, \{b_0, b_2\}, c_0, d_0 \rangle$.

Abstract Interpretation of Scenarios

Scenarios – Successively playable actions.

• E.g. $\delta = a_0 \rightarrow c_0 \uparrow c_1 :: b_0 \rightarrow d_0 \uparrow d_1 :: c_1 \rightarrow b_0 \uparrow b_1 :: b_1 \rightarrow d_1 \uparrow d_2$.

Context — For each sort, subset of initial processes.

• E.g. $\varsigma = \langle a_0, \{b_0, b_2\}, c_0, d_0 \rangle$.

Overall approach

- 2 orthogonal abstractions;
- Bounce Sequences BS;
- Objective Sequences OS:
- Concretization:

$$\gamma_{\varsigma}:\mathsf{OS}\mapsto\wp(\mathsf{Sce});$$

Refinements:

$$\rho:\mathsf{OS}\mapsto\wp(\mathsf{OS});$$

•
$$\gamma_{\varsigma}(\omega) = \gamma_{\varsigma}(\rho(\omega)).$$

Loïc Paulevé

$$a_0 \rightarrow c_0 \upharpoonright c_1 :: b_0 \rightarrow d_0 \upharpoonright d_1 :: c_1 \rightarrow b_0 \upharpoonright b_1 :: b_1 \rightarrow d_1 \upharpoonright d_2$$

Abstraction by Objective Sequences

•
$$c_0
ightharpoonup c_1 :: d_0
ightharpoonup d_1 :: b_0
ightharpoonup b_1 :: d_1
ightharpoonup d_2;$$

Abstraction by Objective Sequences

- $c_0
 ightharpoonup c_1 :: d_0
 ightharpoonup d_1 :: b_0
 ightharpoonup d_1 :: d_1
 ightharpoonup d_2;$
- $b_0
 ightharpoonup b_1 :: d_0
 ightharpoonup d_2$

Loïc Paulevé

Abstraction by Objective Sequences

- $c_0
 ightharpoonup c_1 :: d_0
 ightharpoonup d_1 :: b_0
 ightharpoonup d_1 :: d_1
 ightharpoonup d_2;$
- $b_0
 ightharpoonup b_1 :: d_0
 ightharpoonup d_2$

$$a_0 \rightarrow c_0 \ \stackrel{?}{\vdash} \ c_1 :: b_0 \rightarrow d_0 \ \stackrel{?}{\vdash} \ d_1 :: c_1 \rightarrow b_0 \ \stackrel{?}{\vdash} \ b_1 :: b_1 \rightarrow d_1 \ \stackrel{?}{\vdash} \ d_2$$

Abstraction by Objective Sequences

- $c_0
 ightharpoonup c_1 :: d_0
 ightharpoonup c_1 :: b_0
 ightharpoonup c_2 b_1 :: d_1
 ightharpoonup c_2 c_2 :: d_1
 ightharpoonup c_2 :: d_1
 igh$
- $b_0
 ightharpoonup b_1 :: d_0
 ightharpoonup d_2$
- $d_0
 ightharpoonup ^* d_2, \dots$

Abstraction by Bounce Sequences

E.g.:
$$b_0 \rightarrow d_0 \upharpoonright d_1 :: b_1 \rightarrow d_1 \upharpoonright d_2 (d_0 \upharpoonright^* d_2)$$

$$a_0 \rightarrow c_0 \upharpoonright c_1 :: b_0 \rightarrow d_0 \upharpoonright d_1 :: c_1 \rightarrow b_0 \upharpoonright b_1 :: b_1 \rightarrow d_1 \upharpoonright d_2$$

Abstraction by Objective Sequences

- $c_0
 ightharpoonup c_1 :: d_0
 ightharpoonup c_1 :: d_1
 ightharpoonup c_2 :: d_2
 ightharpoonup c_2 :: d_1
 ightharpoonup c_2 :: d_2
 ightharpoonup c_2 :: d_2
 ightharpoonup c_2 :: d_2
 ightharpoonup c_2 :: d_3
 ightharpoonup c_2 :: d_4
 ightharpoonup c_2 :: d_5
 ightharpoonup c_2 :: d_5
 ightharpoonup c_2 :: d_5
 ightharpoonup c_2 :: d_5
 ightharpoonup c_5 :: d_5
 ightharpo$
- $b_0
 ightharpoonup * b_1 :: d_0
 ightharpoonup * d_2$
- $d_0
 ightharpoons d_2, \dots$

Abstraction by Bounce Sequences

E.g.: $b_0 \rightarrow d_0 \uparrow d_1 :: b_1 \rightarrow d_1 \uparrow d_2 (d_0 \uparrow^* d_2)$ ⇒ can be computed off-line:

- BS $(d_0 \uparrow^* d_2) = \{b_0 \rightarrow d_0 \uparrow^* d_1 :: b_1 \rightarrow d_1 \uparrow^* d_2,$ $b_2 \rightarrow d_0 \upharpoonright d_2$]};
- BS $^{\wedge}(d_0 \uparrow^* d_2) = \{\{b_0, b_1\}, \{b_2\}\}.$

Loïc Paulevé

Two Orthogonal Abstractions

Abstraction by Objective Sequences

- $c_0
 ightharpoonup c_1
 ightharpoonup c_2
 ightharpoonup c_3
 ightharpoonup c_4
 ightharpoonup c_5
 ightharpoonup c_6
 ight$
- $b_0
 ightharpoonup * b_1 :: d_0
 ightharpoonup * d_2$
- $d_0 \upharpoonright^* d_2, \dots$

Abstraction by Bounce Sequences

E.g.: $b_0 \rightarrow d_0 \uparrow d_1 :: b_1 \rightarrow d_1 \uparrow d_2 (d_0 \uparrow^* d_2)$ \Rightarrow can be computed off-line:

- BS $(d_0 \uparrow^* d_2) = \{b_0 \rightarrow d_0 \uparrow^* d_1 :: b_1 \rightarrow d_1 \uparrow^* d_2,$ $b_2 \rightarrow d_0 \upharpoonright d_2$]};
- BS $^{\wedge}(d_0 \uparrow^* d_2) = \{\{b_0, b_1\}, \{b_2\}\}.$
- BS $(d_1 \uparrow^* d_2) = \{b_1 \rightarrow d_1 \uparrow^* d_2, \dots , d_n \uparrow^* d_n\}$ $c_1 \rightarrow d_1 \upharpoonright d_0 :: b_2 \rightarrow d_0 \upharpoonright d_2 \}$:
- BS $^{\wedge}(d_1 \uparrow^* d_2) = \{\{b_1\}, \{b_2, c_1\}\}.$

Loïc Paulevé

Objective Sequence Refinements

$$\gamma_{\varsigma}(\omega) = \{\delta \in \mathsf{Sce} \mid \omega \text{ abstracts } \delta \wedge \mathrm{support}(\delta) \subseteq \varsigma\}.$$

Idea: the more details we know, the better $\gamma_s(\omega)$ should be understood.

Objective Sequence Refinements

$$\gamma_{\varsigma}(\omega) = \{\delta \in \mathsf{Sce} \mid \omega \text{ abstracts } \delta \land \mathrm{support}(\delta) \subseteq \varsigma\}.$$

Idea: the more details we know, the better $\gamma_s(\omega)$ should be understood.

Objective Refinement by **BS** $^{\wedge}$: ρ^{\wedge}

$Obj \times \wp(BS^\wedge)$	℘(OS)
$d_0 ightharpoons d_2$	$\star \vdash^* b_0 :: b_0 \vdash^* b_1 :: d_0 \vdash^* d_2,$
,	$\star \vdash^* b_1 :: b_1 \vdash^* b_0 :: d_0 \vdash^* d_2,$
$\{\{b_0, b_1\}, \{b_2\}\}$	$\star \dot{r}^* b_2 :: d_0 \dot{r}^* d_2$
$\gamma_{\varsigma}(d_0 ightharpoons d_2)$	$=\gamma_{\varsigma}(ho^{\wedge}(d_0ec{r}^*d_2,BS^{\wedge}(d_0ec{r}^*d_2)))$

Objective Sequence Refinements

$$\gamma_{\varsigma}(\omega) = \{\delta \in \mathsf{Sce} \mid \omega \text{ abstracts } \delta \land \mathrm{support}(\delta) \subseteq \varsigma\}.$$

Idea: the more details we know, the better $\gamma_s(\omega)$ should be understood.

Objective Refinement by BS $^{\wedge}$: ρ^{\wedge}

$Obj \times \wp(BS^\wedge)$	℘(OS)
$d_0 ightharpoons d_2$	$* \vdash b_0 :: b_0 \vdash b_1 :: d_0 \vdash d_2,$
,	$\star \vdash^* b_1 :: b_1 \vdash^* b_0 :: d_0 \vdash^* d_2,$
$\{\{b_0, b_1\}, \{b_2\}\}$	$\star \dot{r}^{*} b_2 :: d_0 \dot{r}^{*} d_2$
$\gamma_{\varsigma}(d_0 ightharpoons d_2)$	$=\gamma_{\varsigma}(ho^{\wedge}(d_0\!\upharpoonright^*\!d_2,BS^{\wedge}(d_0\!\upharpoonright^*\!d_2)))$

Generalization to **OS** refinements: $\widetilde{\rho}$

$OS imes \wp(BS^\wedge)$	℘(OS)
ω , BS $^{\wedge}$	$\operatorname{interleave}inom{\omega'}{\omega_{1n-1}}::\omega_{n \omega }$
	where $n \in \mathbb{I}^{\omega}$
	and ω' :: $\omega_n \in ho^\wedge(\omega_n, BS^\wedge(\omega_n))$
$\gamma_{arsigma}(\omega)$	$= \gamma_{\varsigma}(\widetilde{\rho}(\omega,BS^{\wedge}))$

Abstract Structure of Process Hitting

Approximations of Successive Reachability

Approximations of Successive Reachability

Un-ordered Over-approximation

Example

Necessary condition for $\gamma_{\varsigma}(\omega) \neq \emptyset$: From each objective within ω , there exists a traversal of $\mathcal{A}_{\varsigma}^{\omega}$ such that:

- $\bullet \ \ \text{objective} \to \text{follow at least one solution}; \\$
- process → follow all objectives;
- no cycle.

Un-ordered Over-approximation

Example

Necessary condition for $\gamma_{\varsigma}(\omega) \neq \emptyset$: From each objective within ω , there exists a traversal of $\mathcal{A}_{\varepsilon}^{\omega}$ such that:

- $\bullet \ \ \text{objective} \to \text{follow at least one solution;}$
- process → follow all objectives;
- no cycle.

Un-ordered Over-approximation

Example

Necessary condition for $\gamma_{\varsigma}(\omega) \neq \emptyset$: From each objective within ω , there exists a traversal of $\mathcal{A}_{\varsigma}^{\omega}$ such that:

- ullet objective o follow at least one solution;
- process → follow all objectives;
- no cycle.

Approximations of Successive Reachability

Un-ordered Under-approximation

Example

Sufficient condition for $\gamma_{\varsigma}(\omega) \neq \emptyset$:

- $\lceil \mathcal{B}_{\varsigma}^{\omega} \rceil$ has no cycle;
- each objective has at least one solution.

 $[\mathcal{B}^{\omega}_{\varsigma}]$: saturated $\mathcal{A}^{\omega}_{\varsigma}$.

Example

Sufficient condition for $\gamma_s(\omega) \neq \emptyset$:

- $[\mathcal{B}_{\varsigma}^{\omega}]$ has no cycle;
- each objective has at least one solution.

 $[\mathcal{B}_{\varsigma}^{\omega}]$: saturated $\mathcal{A}_{\varsigma}^{\omega}$.

Un-ordered Under-approximation

Example

Sufficient condition for $\gamma_{\varsigma}(\omega) \neq \emptyset$:

- $\lceil \mathcal{B}_{\varsigma}^{\omega} \rceil$ has no cycle;
- each objective has at least one solution.

 $[\mathcal{B}^{\omega}_{\varsigma}]$: saturated $\mathcal{A}^{\omega}_{\varsigma}$.

Un-ordered Under-approximation

Example

Sufficient condition for $\gamma_s(\omega) \neq \emptyset$:

- $[\mathcal{B}_{c}^{\omega}]$ has no cycle;
- each objective has at least one solution.

 $[\mathcal{B}_{c}^{\omega}]$: saturated \mathcal{A}_{c}^{ω} .

Loïc Paulevé

19/26

Static Analysis of Successive Reachability

Static Analysis of Successive Reachability

Still inconclusive?

- Require new analyses of the abstract structure
- \Rightarrow drive refinements of ω .

Complexity

Abstract Strutures $\mathcal{A}_{\varsigma}^{\omega}$, $[\mathcal{B}_{\varsigma}^{\omega}]$

- BS^{\(\Lambda\)} computation: exponential in the number of processes within a single sort.
- Size of BS^{\wedge}: combinaisons of |Proc_a| processes $\binom{|Proc_a|}{|Proc_a|}$.
- Size of \mathcal{A}_{S}^{ω} (and $[\mathcal{B}_{S}^{\omega}]$): polynomial in processes number \times size of BS^{\wedge}.

Analyses

- Over-approximations: polynomial in the size of $\mathcal{A}_{\varsigma}^{\omega}$.
- Different strategies of under-approximation:
 - global: polynomial in the size of $[\mathcal{B}_c^{\omega}]$;
 - per solution: × exponential in the size of BS[^].

⇒ efficient with a small number of processes per sort, while a very large number of sorts can be handled.

Outline

- 1 The Process Hitting
- 2 Static Analysis

Fixpoint Enumeration
Abstract Interpretation of Successive Reachability Properties
Towards Control of Reachability Properties

- 4 Conclusion and Outlook

Necessary condition for $\gamma_{\varsigma}(\omega) \neq \emptyset$: From each objective within ω , there exists a traversal of $\mathcal{A}_{\varsigma}^{\omega}$ such that:

- objective → follow at least one solution;
- process → follow all objectives;
- no cycle.

Necessary condition for $\gamma_{\epsilon}(\omega) \neq \emptyset$: From each objective within ω , there exists a traversal of $\mathcal{A}^{\omega}_{\epsilon}$ such that:

- objective → follow at least one solution;
- process → follow all objectives;
- no cycle.

Outline

- 1 The Process Hitting
- 2 Static Analysis
 Fixpoint Enumeration
 Abstract Interpretation of Successive Reachability Properties
 Towards Control of Reachability Properties
- 3 Experiments and Comparisons
- 4 Conclusion and Outlook

EGFR/ErbB Signalling Network

(104 components)

Execution times

- Real biological models.
- Wide-range of biological/arbitrary reachability analysis.
- Always conclusive.

Model	sorts	procs	actions	states	Biocham ¹	libddd	PINT ²
egfr20	35	196	670	2 ⁶⁴	[3s-KO]	[1s-150s]	0.007s
tcrsig40	54	156	301	2 ⁷³	[1s-KO]	[0.6s-KO]	0.004s
tcrsig94	133	448	1124	2 ¹⁹⁴	KO	KO	0.030s
egfr104	193	748	2356	2 ³²⁰	KO	KO	0.050s

¹ [Inria Paris-Rocquencourt/Contraintes] using NuSMV2

² http://process.hitting.free.fr

Outline

- 1 The Process Hitting
- ② Static Analysis
 Fixpoint Enumeration
 Abstract Interpretation of Successive Reachability Properties
 Towards Control of Reachability Properties
- 3 Experiments and Comparisons
- 4 Conclusion and Outlook

Conclusion

Static Analysis of Process Hittings

- Static listing of fixed points.
- Very efficient approximations of successive reachability properties.
- Key processes uncovering (necessary to a given reachability) (towards control).
- Make tractable the formal analysis of large Biological Regulatory Networks.

Future work

- Formal link with event structures (such as Petri Nets unfoldings);
- Improve the analysis with libddd?
- Extension to the Process Hitting with Priorities (allows the weak bisimulation of CFSM).

Thank you for your attention.