Abstract Modelling and Analysis of Large Biological Regulatory Networks

ETH Zurich - BISON Seminar - 4th April 2012

Loïc Paulevé

LIX, École Polytechnique, France pauleve@lix.polytechnique.fr http://loicpauleve.name

Joint work with Morgan Magnin and Olivier Roux IRCCyN, École Centrale de Nantes, France (MeForBio team)

Overview

Computer science for systems biology

- Models for dynamical concurrent systems.
- Validation of the model / control of the system.
- We focus on Biological Regulatory Networks (BRNs).
- We introduce a new modelling framework: the Process Hitting.

Overview

Computer science for systems biology

- Models for dynamical concurrent systems.
- Validation of the model / control of the system.
- We focus on Biological Regulatory Networks (BRNs).
- We introduce a new modelling framework: the Process Hitting.

The Process Hitting [Paulevé, Magnin, Roux in TCSB 2011]

- Elementary framework for dynamical complex systems;
- Applied to BRNs; not limited to.
- Stochastic and Time dimensions (simulation + standard model checking).
- Software available (PINT http://process.hitting.free.fr).

Overview

Computer science for systems biology

- Models for dynamical concurrent systems.
- Validation of the model / control of the system.
- We focus on Biological Regulatory Networks (BRNs).
- We introduce a new modelling framework: the Process Hitting.

The Process Hitting [Paulevé, Magnin, Roux in TCSB 2011]

- Elementary framework for dynamical complex systems;
- Applied to BRNs; not limited to.
- Stochastic and Time dimensions (simulation + standard model checking).
- Software available (PINT http://process.hitting.free.fr).

Large-scale model checking (discrete dynamical properties)

- Cope with state space explosion.
- Static Analysis by Abstract Interpretation
- Main result: efficient reachability properties approximation + clues for control.

Biological Regulatory Networks (BRNs)

The interaction graph

Qualitative Networks

- Each component has a finite set of qualitative levels ({0, 1, 2}).
- Functions associate the next level given the state of the regulators.

Boolean example:

[René Thomas in Journal of Theoretical Biology, 1973] [Richard, Comet, Bernot in Modern Formal Methods and App., 2006]

Hybrid Modelling

Continuous features governing discrete transitions

Introduce delays to actions

Stochastic Models

- Delays are random variables (generally exponential, i.e Markovian);
- ⇒ compute probabilities for observing behaviours.

Stochastic Petri Nets / π -calculus, etc. [Heiner, Regev, Priami, Phillips, etc.]

Timed Models

Timed / Hybrid Automata [Ahmad, Roux, Batt, Bockmayr, etc.]

State of the Art

Loïc Paulevé

State of the Art

State of the Art

6/33

Loïc Paulevé

- Sorts: a,b,z; Processes: a₀, a₁, b₀, b₁, z₀, z₁, z₂;
- Actions: a_0 hits b_1 to make it bounce to $b_0, \ldots;$
- States: $\langle a_1, b_1, z_1 \rangle$, $\langle a_0, b_1, z_1 \rangle$, $\langle a_0, b_0, z_1 \rangle$, ...;
- Restriction of Communicating Finite-State Machines (CFSM).

Loïc Paulevé

Paulevé, Magnin, Roux in TCSB 2011]

- Sorts: a,b,z; Processes: a₀, a₁, b₀, b₁, z₀, z₁, z₂;
- Actions: a_0 hits b_1 to make it bounce to b_0, \ldots ;
- States: $\langle a_1, b_1, z_1 \rangle$, $\langle a_0, b_1, z_1 \rangle$, $\langle a_0, b_0, z_1 \rangle$, ...;
- Restriction of Communicating Finite-State Machines (CFSM).

Paulevé, Magnin, Roux in TCSB 2011]

- Sorts: a,b,z; Processes: a₀, a₁, b₀, b₁, z₀, z₁, z₂;
- Actions: a_0 hits b_1 to make it bounce to b_0, \ldots ;
- States: $\langle a_1, b_1, z_1 \rangle$, $\langle a_0, b_1, z_1 \rangle$, $\langle a_0, b_0, z_1 \rangle$, ...;
- Restriction of Communicating Finite-State Machines (CFSM).

- Sorts: a,b,z; Processes: a₀, a₁, b₀, b₁, z₀, z₁, z₂;
- Actions: a_0 hits b_1 to make it bounce to $b_0, \ldots;$
- States: $\langle a_1, b_1, z_1 \rangle$, $\langle a_0, b_1, z_1 \rangle$, $\langle a_0, b_0, z_1 \rangle$, ...;
- Restriction of Communicating Finite-State Machines (CFSM).

- Sorts: a,b,z; Processes: a₀, a₁, b₀, b₁, z₀, z₁, z₂;
- Actions: a_0 hits b_1 to make it bounce to $b_0, \ldots;$
- States: $\langle a_1, b_1, z_1 \rangle$, $\langle a_0, b_1, z_1 \rangle$, $\langle a_0, b_0, z_1 \rangle$, ...;
- Restriction of Communicating Finite-State Machines (CFSM).

Loïc Paulevé

- Idea: the most permissive dynamics [Paulevé, Magnin, Roux in TCSB 2011].
- Without knowledge of functions between components.

Boolean case:

- Idea: the most permissive dynamics [Paulevé, Magnin, Roux in TCSB 2011].
- Without knowledge of functions between components.

Boolean case:

- Idea: the most permissive dynamics [Paulevé, Magnin, Roux in TCSB 2011].
- Without knowledge of functions between components.

Boolean case:

- Idea: the most permissive dynamics [Paulevé, Magnin, Roux in TCSB 2011].
- Without knowledge of functions between components.

Boolean case:

- Idea: the most permissive dynamics [Paulevé, Magnin, Roux in TCSB 2011].
- Without knowledge of functions between components.

Boolean case:

- Idea: the most permissive dynamics [Paulevé, Magnin, Roux in TCSB 2011].
- Without knowledge of functions between components.

Boolean case:

- Idea: $c_0
 rightharpoonup c_1$ when a_0 and b_1 are present.
- Introduction of a cooperative sort reflecting the state of the sorts a and b.

- Idea: $c_0
 rightharpoonup c_1$ when a_0 and b_1 are present.
- Introduction of a cooperative sort reflecting the state of the sorts a and b.

- Idea: $c_0
 rightharpoonup c_1$ when a_0 and b_1 are present.
- Introduction of a cooperative sort reflecting the state of the sorts a and b.

- Idea: $c_0
 rightharpoonup c_1$ when a_0 and b_1 are present.
- Introduction of a cooperative sort reflecting the state of the sorts a and b.

- Idea: $c_0
 rightharpoonup c_1$ when a_0 and b_1 are present.
- Introduction of a cooperative sort reflecting the state of the sorts a and b.

⇒ introduce a temporal shift; similar to complexes.

Incoherent feed-forward loop

Incoherent feed-forward loop

Incoherent feed-forward loop

Incoherent feed-forward loop

Toy example

Outline

Static Analysis of BRNs using the Interaction Graph

An interaction graph can describe a large set of different dynamics.

Relationships between the interaction graph and dynamical properties:

- Multi-stationnarity requires a positive circuit (René Thomas conjecture) [Soule in ComPlexUs, 2003] [Richard, Comet in Discrete Appl. Math., 2007].
- Sustained oscillations require a negative circuit (René Thomas conjecture) [Remy, et al. in Adv. Appl. Math., 2008] [Richard in Adv. Appl. Math., 2010].
- The maximum number of fixed points can be characterized [Aracena in Bul. of Mathematical Biology, 2008]; [Richard in Discrete Appl. Math., 2009].
- Topological Fixed Points [Paulevé, Richard in CRAS 2010].
- etc.

(See [Paulevé, Richard at SASB'11] for a short survey).

Abstract Modelling and Analysis of Large BRNs: Static Analysis of the Process Hitting

Static Analysis of Process Hittings

Intuition

- Simplicity of the Process Hitting ⇒ models with simple structures.
- Efficient static derivation of dynamical properties.

Static Analysis of Process Hittings

Intuition

- Simplicity of the Process Hitting ⇒ models with simple structures.
- Efficient static derivation of dynamical properties.

Fixed Points

- Complete enumeration of fixed points.
- Reduction to the *n*-cliques of an *n*-partite graph.

Static Analysis of Process Hittings

Intuition

- Simplicity of the Process Hitting ⇒ models with simple structures.
- Efficient static derivation of dynamical properties.

Fixed Points

- Complete enumeration of fixed points.
- Reduction to the *n*-cliques of an *n*-partite graph.

Successive reachability properties EF $a_i \wedge (EF \ b_i \wedge ...)$

- Limited complexity but may be inconclusive (Yes/No/Inconc).
- Abstract interpretation techniques.
- Extraction of key processes (towards control).

Outline

Fixed Points

Paulevé, Magnin, Roux in TCSB 2011

n-cliques <u>are</u> fixed points

Fixed Points

Paulevé, Magnin, Roux in TCSB 2011

n-cliques are fixed points

Fixed Points

Paulevé, Magnin, Roux in TCSB 2011

n-cliques <u>are</u> fixed points

Outline

Static Analysis of Successive Reachability Properties

[Paulevé, Magnin, Roux in MSCS 2012]

Successive Reachability \mathcal{R}

- Given a Process Hitting \mathcal{PH} with an initial state,
- is it possible to reach the process a_i ? ...
- then the process b_i ? ... etc.

Static Analysis of Successive Reachability Properties

[Paulevé, Magnin, Roux in MSCS 2012]

Successive Reachability \mathcal{R}

- Given a Process Hitting \mathcal{PH} with an initial state,
- is it possible to reach the process a_i ? ...
- then the process b_i ? ...etc.

Difficulties: combinatorial explosion of dynamics to explore.

Static Analysis of Successive Reachability Properties

[Paulevé, Magnin, Roux in MSCS 2012]

Successive Reachability ${\cal R}$

- Given a Process Hitting \mathcal{PH} with an initial state,
- is it possible to reach the process a_i ? ...
- then the process b_i ? ...etc.

Difficulties: combinatorial explosion of dynamics to explore.

Chosen approach

Under-approximations \mathcal{PH} satisfies $\mathcal{Q} \Longrightarrow \mathcal{R}$ is possible.

Requirement: checking $\mathcal{P}(\mathcal{Q})$ is fast.

$$a_0 \rightarrow c_0 \upharpoonright c_1 :: b_0 \rightarrow d_0 \upharpoonright d_1 :: c_1 \rightarrow b_0 \upharpoonright b_1 :: b_1 \rightarrow d_1 \upharpoonright d_2$$

$$a_0 \rightarrow c_0 \upharpoonright c_1 :: b_0 \rightarrow d_0 \upharpoonright d_1 :: c_1 \rightarrow b_0 \upharpoonright b_1 :: b_1 \rightarrow d_1 \upharpoonright d_2$$

$$a_0 \rightarrow c_0 \upharpoonright c_1 :: b_0 \rightarrow d_0 \upharpoonright d_1 :: c_1 \rightarrow b_0 \upharpoonright b_1 :: b_1 \rightarrow d_1 \upharpoonright d_2$$

$$a_0 \rightarrow c_0 \ r \ c_1 :: b_0 \rightarrow d_0 \ r \ d_1 :: c_1 \rightarrow b_0 \ r \ b_1 :: b_1 \rightarrow d_1 \ r \ d_2$$

$$a_0 \rightarrow c_0 \upharpoonright c_1 :: b_0 \rightarrow d_0 \upharpoonright d_1 :: c_1 \rightarrow b_0 \upharpoonright b_1 :: b_1 \rightarrow d_1 \upharpoonright d_2$$

$$a_0 \rightarrow c_0 \upharpoonright c_1 :: b_0 \rightarrow d_0 \upharpoonright d_1 :: c_1 \rightarrow b_0 \upharpoonright b_1 :: b_1 \rightarrow d_1 \upharpoonright d_2$$

Abstraction by Objective Sequences

•
$$c_0 \upharpoonright^* c_1 :: d_0 \upharpoonright^* d_1 :: b_0 \upharpoonright^* b_1 :: d_1 \upharpoonright^* d_2$$
;

$$a_0 \rightarrow c_0 \upharpoonright c_1 :: b_0 \rightarrow d_0 \upharpoonright d_1 :: c_1 \rightarrow b_0 \upharpoonright b_1 :: b_1 \rightarrow d_1 \upharpoonright d_2$$

Abstraction by Objective Sequences

- $c_0
 ightharpoonup c_1 :: d_0
 ightharpoonup d_1 :: b_0
 ightharpoonup d_1 :: d_1
 ightharpoonup d_2;$
- $b_0
 ightharpoonup b_1 :: d_0
 ightharpoonup d_2$

$$a_0 \rightarrow c_0 \upharpoonright c_1 :: b_0 \rightarrow d_0 \upharpoonright d_1 :: c_1 \rightarrow b_0 \upharpoonright b_1 :: b_1 \rightarrow d_1 \upharpoonright d_2$$

Abstraction by Objective Sequences

- $c_0
 ightharpoonup c_1 :: d_0
 ightharpoonup d_1 :: b_0
 ightharpoonup d_1 :: d_1
 ightharpoonup d_2;$
- $b_0
 ightharpoonup b_1 :: d_0
 ightharpoonup d_2$
- $d_0 \uparrow^* d_2, \dots$

Abstraction by Objective Sequences

- $c_0
 ightharpoonup c_1 :: d_0
 ightharpoonup d_1 :: b_0
 ightharpoonup d_1 :: d_1
 ightharpoonup d_2;$
- $b_0
 ightharpoonup b_1 :: d_0
 ightharpoonup d_2$
- $d_0
 ightharpoons d_2, \dots$

Abstraction by Bounce Sequences

E.g.:
$$b_0 \rightarrow d_0 \upharpoonright d_1 :: b_1 \rightarrow d_1 \upharpoonright d_2 (d_0 \upharpoonright^* d_2)$$

Abstraction by Objective Sequences

- $c_0
 ightharpoonup c_1 :: d_0
 ightharpoonup c_1 :: d_0
 ightharpoonup c_2 :: d_1
 ightharpoonup c_3 :: d_1
 ightharpoonup c_4 :: d_1
 ightharpoonup c_5 :: d_1
 ightharpo$
- $b_0
 ightharpoonup b_1 :: d_0
 ightharpoonup b_2$
- $d_0 \upharpoonright^* d_2, \dots$

Abstraction by Bounce Sequences

E.g.: $b_0 \rightarrow d_0 \upharpoonright d_1 :: b_1 \rightarrow d_1 \upharpoonright d_2 (d_0 \upharpoonright^* d_2)$ \Rightarrow can be computed off-line:

- BS $(d_0 \uparrow^* d_2) = \{b_0 \rightarrow d_0 \uparrow^* d_1 :: b_1 \rightarrow d_1 \uparrow^* d_2,$ $b_2 \rightarrow d_0 \uparrow d_2$:
- BS $^{\wedge}(d_0 \uparrow^* d_2) = \{\{b_0, b_1\}, \{b_2\}\}.$

Abstraction by Objective Sequences

- $c_0
 ightharpoonup c_1 :: d_0
 ightharpoonup c_1 :: d_0
 ightharpoonup c_2 :: d_1
 ightharpoonup c_3 :: d_1
 ightharpoonup c_4 :: d_1
 ightharpoonup c_5 :: d_1
 ightharpo$
- $b_0
 ightharpoonup * b_1 :: d_0
 ightharpoonup * d_2$
- $d_0 \upharpoonright^* d_2, \dots$

Abstraction by Bounce Sequences

E.g.: $b_0 \rightarrow d_0 \upharpoonright d_1 :: b_1 \rightarrow d_1 \upharpoonright d_2 (d_0 \upharpoonright^* d_2)$ \Rightarrow can be computed off-line:

- BS $(d_0 \uparrow^* d_2) = \{b_0 \rightarrow d_0 \uparrow^* d_1 :: b_1 \rightarrow d_1 \uparrow^* d_2,$ $b_2 \rightarrow d_0 \uparrow d_2$:
- BS $^{\wedge}(d_0 \uparrow^* d_2) = \{\{b_0, b_1\}, \{b_2\}\}.$
- BS $(d_1 \uparrow^* d_2) = \{b_1 \rightarrow d_1 \uparrow^* d_2, \dots , d_n \uparrow^* d_n\}$ $c_1 \rightarrow d_1 \upharpoonright d_0 :: b_2 \rightarrow d_0 \upharpoonright d_2 \}$:
- BS $^{\wedge}(d_1 \uparrow^* d_2) = \{\{b_1\}, \{b_2, c_1\}\}.$

Abstract Interpretation of Scenarios

Scenarios – Successively playable actions.

Context — For each sort, subset of initial processes.

• E.g. $\varsigma = \langle a_0, \{b_0, b_2\}, c_0, d_0 \rangle$.

Overall approach

- 2 complementary abstractions;
- Bounce Sequences BS;
- Objective Sequences OS;
- Concretization:

$$\gamma_{\varsigma}:\mathsf{OS}\mapsto\wp(\mathsf{Sce});$$

- Refinements:
 - $\rho: \mathsf{OS} \mapsto \wp(\mathsf{OS});$
- $\gamma_{\varsigma}(\omega) = \gamma_{\varsigma}(\rho(\omega)).$

Objective Sequence Refinements

$$\gamma_\varsigma(\omega) = \{\delta \in \mathsf{Sce} \mid \omega \text{ abstracts } \delta \wedge \mathrm{support}(\delta) \subseteq \varsigma\}.$$

Objective Refinement by BS $^{\wedge}$: ρ^{\wedge}

- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		
$Obj \times \wp(BS^\wedge)$	$\wp(OS)$	
$d_0 ightharpoons d_2$	$* \vdash *b_0 :: b_0 \vdash *b_1 :: d_0 \vdash *d_2,$	
,	$\star \vdash b_1 :: b_1 \vdash b_0 :: d_0 \vdash d_2$,	
$\{\{b_0, b_1\}, \{b_2\}\}$	$\star \dot{r}^* b_2 :: d_0 \dot{r}^* d_2$	
$\gamma_{\varsigma}(d_0 ho^* d_2)$	$=\gamma_{arsigma}(ho^{\wedge}(d_0\! estriction^*d_2,BS^{\wedge}(d_0\! ho^*d_2)))$	

Objective Sequence Refinements

 $\gamma_{\varsigma}(\omega) = \{\delta \in \mathsf{Sce} \mid \omega \text{ abstracts } \delta \land \mathrm{support}(\delta) \subseteq \varsigma\}.$

Objective Refinement by BS $^{\wedge}$: ρ^{\wedge}

$Obj imes \wp(BS^\wedge)$	℘(OS)
<i>d</i> ₀	$\star \vdash^* b_0 :: b_0 \vdash^* b_1 :: d_0 \vdash^* d_2,$
,	$\star \dot{\vdash} {}^*b_1 :: b_1 \dot{\vdash} {}^*b_0 :: d_0 \dot{\vdash} {}^*d_2,$
$\{\{b_0, b_1\}, \{b_2\}\}$	$\star \dot{r}^* b_2 :: d_0 \dot{r}^* d_2$
$\gamma_{\varsigma}(d_0 ightharpoons d_2)$	$=\gamma_{arsigma}(ho^{\wedge}(d_0\! estriction^{st}d_2,BS^{\wedge}(d_0\! estriction^{st}d_2)))$

Generalization to **OS** refinements: $\widetilde{\rho}$

$OS imes \wp(BS^\wedge)$	℘(OS)
ω , BS $^{\wedge}$	$\operatorname{interleave}inom{\omega'}{\omega_{1n-1}}::\omega_{n \omega }$
	where $n \in \mathbb{I}^{\omega}$
	and ω' :: $\omega_n \in ho^\wedge(\omega_n,BS^\wedge(\omega_n))$
$\gamma_{arsigma}(\omega)$	$=\gamma_arsigma(\widetilde ho(\omega,BS^\wedge))$

Abstract Structure of Process Hitting

Approximations of Successive Reachability

Over- approximations	 Un-ordered approximation. Ordered approximation.	No / Inconc
	 Ordered Approximation with occurences order constraints. 	
	\uparrow	
	Successive Reachability	
	<u></u>	
Under- approximations	 Un-ordered approximation. Ordered approximation.	Yes / Inconc

Approximations of Successive Reachability

Un-ordered Over-approximation

Example

Necessary condition for $\gamma_{\varsigma}(\omega) \neq \emptyset$: From each objective within ω , there exists a traversal of \mathcal{A}_{c}^{ω} such that:

- objective → follow at least one solution;
- process → follow all objectives;
- no cycle.

Un-ordered Over-approximation

Example

Necessary condition for $\gamma_{\varsigma}(\omega) \neq \emptyset$: From each objective within ω , there exists a traversal of \mathcal{A}_{c}^{ω} such that:

- objective → follow at least one solution;
- process → follow all objectives;
- no cycle.

Un-ordered Over-approximation

Example

Necessary condition for $\gamma_{\varsigma}(\omega) \neq \emptyset$: From each objective within ω , there exists a traversal of $\mathcal{A}_{\varsigma}^{\omega}$ such that:

- ullet objective o follow at least one solution;
- process → follow all objectives;
- no cycle.

Approximations of Successive Reachability

Un-ordered Under-approximation

Example

Sufficient condition for $\gamma_{\varsigma}(\omega) \neq \emptyset$:

- $\lceil \mathcal{B}_{\varsigma}^{\omega} \rceil$ has no cycle;
- each objective has at least one solution.

 $[\mathcal{B}^{\omega}_{\varsigma}]$: saturated $\mathcal{A}^{\omega}_{\varsigma}$.

Example

Sufficient condition for $\gamma_s(\omega) \neq \emptyset$:

- $[\mathcal{B}_{c}^{\omega}]$ has no cycle;
- each objective has at least one solution.

 $[\mathcal{B}_{\varsigma}^{\omega}]$: saturated $\mathcal{A}_{\varsigma}^{\omega}$.

Loïc Paulevé

Static Analysis of Successive Reachability

Over- approximations	 Un-ordered approximation. Ordered approximation.	No / Inconc
	 Ordered Approximation with occurences order constraints. 	
	1	
	Successive Reachability	
	<u> </u>	
Under- approximations	 Un-ordered approximation. Ordered approximation.	Yes / Inconc

Static Analysis of Successive Reachability

Still inconclusive?

- Require new analyses of the abstract structure
- \Rightarrow drive refinements of ω .

Complexity

Abstract Strutures $\mathcal{A}_{\varsigma}^{\omega}$, $[\mathcal{B}_{\varsigma}^{\omega}]$

- BS^{\(\Lambda\)} computation: exponential in the number of processes within a single sort.
- Size of BS^{\wedge}: combinaisons of |Proc_a| processes ($\frac{|Proc_a|}{|Proc_a|}$).
- Size of \mathcal{A}_{s}^{ω} (and $[\mathcal{B}_{s}^{\omega}]$): polynomial in processes number \times size of BS^{\wedge}.

Analyses

- Over-approximations: polynomial in the size of $\mathcal{A}_{\varsigma}^{\omega}$.
- Different strategies of under-approximation:
 - global: polynomial in the size of $[\mathcal{B}_c^{\omega}]$;
 - per solution: × exponential in the size of BS[^].

⇒ efficient with a small number of processes per sort, while a very large number of sorts can be handled.

Extraction of Key Processes

Necessary condition for $\gamma_{\varsigma}(\omega) \neq \emptyset$: From each objective within ω , there exists a traversal of $\mathcal{A}_{\varsigma}^{\omega}$ such that:

- objective → follow at least one solution;
- process → follow all objectives;
- no cycle.

Necessary condition for $\gamma_{\varsigma}(\omega) \neq \emptyset$: From each objective within ω , there exists a traversal of $\mathcal{A}_{\varsigma}^{\omega}$ such that:

- objective → follow at least one solution;
- process → follow all objectives;
- no cycle.

Outline

EGFR/ErbB Signalling Network

(104 components)

Execution times

- Real biological models.
- Wide-range of biological/arbitrary reachability analysis.
- · Always conclusive.

Model	sorts	procs	actions	states	Biocham ¹	libDDD ²	PINT ³
egfr20	35	196	670	2 ⁶⁴	[3s-KO]	[1s-150s]	0.007s
tcrsig40	54	156	301	2 ⁷³	[1s-KO]	[0.6s-KO]	0.004s
tcrsig94	133	448	1124	2 ¹⁹⁴	KO	KO	0.030s
egfr104	193	748	2356	2^{320}	KO	KO	0.050s

http://contraintes.inria.fr/biocham (using NuSMV2)

Current work: signalling networks (TGF- β) with more than 8000 components.

² http://move.lip6.fr/software/DDD

³ http://process.hitting.free.fr

Conclusion

The Process Hitting

- Simple framework for dynamical complex systems;
- Abstract modelling of Biological Regulatory Networks;
- Future work: abstract modelling of biochemical networks.

Static Analysis by Abstract Interpretation of Process Hitting

- Very efficient over- and under-approximations of process reachability;
- Extract necessary processes for achieving reachabilities: towards control.
- Future work may establish other dynamical properties: attractors.

Loïc Paulevé

Outlook

Towards Quantitative analysis

- Static bifurcation analysis.
- Process Hitting with Priorities; Stochastic and Time Process Hitting;
- Identify key processes/actions/parameters (controlling bifurcations).

Thank you for your attention.

Approximations of Successive Reachability

Overapproximations

Ordered approximation.

Ordered Approximation with occurences order constraints.

No / Inconc

No / Inconc

No / Inconc

Underapproximation

Underapproximations

Ordered approximation.

Yes / Inconc

Ordered approximation.

Goal:
$$\gamma_s(a_1 \uparrow^* a_0 :: \omega) \neq \emptyset \Longrightarrow \gamma_{maxs}(\omega) \neq \emptyset$$

• By default, use the saturated context of $[\mathcal{A}_{c}^{\omega}]$:

$$\lceil \mathcal{A}^{\omega}_{\varsigma} \rceil = \operatorname{lfp} \left(\mathcal{A}^{\omega}_{\varsigma} \mapsto \mathcal{A}^{\omega}_{\varsigma \cap \operatorname{procs}(\mathcal{A}^{\omega}_{\varsigma})} \right) .$$

•
$$a_0 \notin \varsigma$$
, $\delta \in \gamma_{\varsigma}(a_1 \uparrow^* * a_0 :: \omega)$
 $\Longrightarrow \delta = \delta_{1...n} :: c_i \to a_1 \uparrow^* a_0 :: \delta_{m..|\delta|}$ with $\delta_{m..|\delta|} \in \gamma_{\varsigma'}(\omega)$
 $\Longrightarrow \max_{\varsigma}[a] = \{a_0\} \text{ and } \max_{\varsigma}[c] = \{c_i\}.$

Goal:
$$\gamma_{\varsigma}(a_1 \uparrow^* a_0 :: \omega) \neq \emptyset \Longrightarrow \gamma_{\max\varsigma}(\omega) \neq \emptyset$$

• By default, use the saturated context of $[\mathcal{A}_{c}^{\omega}]$:

$$\lceil \mathcal{A}_{\varsigma}^{\omega} \rceil = \operatorname{lfp} \left(\mathcal{A}_{\varsigma}^{\omega} \mapsto \mathcal{A}_{\varsigma \cap \operatorname{procs}(\mathcal{A}_{\varsigma}^{\omega})}^{\omega} \right) .$$

•
$$a_0 \notin \varsigma$$
, $\delta \in \gamma_{\varsigma}(a_1 \uparrow^* * a_0 :: \omega)$
 $\Longrightarrow \delta = \delta_{1..n} :: c_i \to a_i \uparrow^* a_0 :: \delta_{m..|\delta|}$ with $\delta_{m..|\delta|} \in \gamma_{\varsigma'}(\omega)$
 $\Longrightarrow \max_{\varsigma}[a] = \{a_0\}$ and $\max_{\varsigma}[c] = \{c_i\}$.

$$\gamma_{\langle a_1,b_0\rangle}(a_1 \upharpoonright^* a_0 :: b_0 \upharpoonright^* b_1) \neq \emptyset$$

Goal:
$$\gamma_{\varsigma}(a_1 r^{\flat *} a_0 :: \omega) \neq \emptyset \Longrightarrow \gamma_{\max\varsigma}(\omega) \neq \emptyset$$

• By default, use the saturated context of $[\mathcal{A}_{c}^{\omega}]$:

$$\lceil \mathcal{A}^{\omega}_{\varsigma} \rceil = \operatorname{lfp} \left(\mathcal{A}^{\omega}_{\varsigma} \mapsto \mathcal{A}^{\omega}_{\varsigma \cap \operatorname{procs}(\mathcal{A}^{\omega}_{\varsigma})} \right) .$$

•
$$a_0 \notin \varsigma$$
, $\delta \in \gamma_{\varsigma}(a_1 \uparrow^* * a_0 :: \omega)$
 $\Longrightarrow \delta = \delta_{1..n} :: c_i \longrightarrow a_i \uparrow^* a_0 :: \delta_{m..|\delta|}$ with $\delta_{m..|\delta|} \in \gamma_{\varsigma'}(\omega)$
 $\Longrightarrow max\varsigma[a] = \{a_0\}$ and $max\varsigma[c] = \{c_i\}$.

$$\gamma_{\langle a_1,b_0\rangle}(a_1 \upharpoonright^* a_0 :: b_0 \upharpoonright^* b_1) \neq \emptyset$$

Goal:
$$\gamma_{\varsigma}(a_1 r^{\flat *} a_0 :: \omega) \neq \emptyset \Longrightarrow \gamma_{\max\varsigma}(\omega) \neq \emptyset$$

• By default, use the saturated context of $[\mathcal{A}_{c}^{\omega}]$:

$$\lceil \mathcal{A}^{\omega}_{\varsigma} \rceil = \operatorname{lfp} \left(\mathcal{A}^{\omega}_{\varsigma} \mapsto \mathcal{A}^{\omega}_{\varsigma \cap \operatorname{procs}(\mathcal{A}^{\omega}_{\varsigma})} \right) .$$

•
$$a_0 \notin \varsigma$$
, $\delta \in \gamma_{\varsigma}(a_1 \uparrow^* * a_0 :: \omega)$
 $\Longrightarrow \delta = \underbrace{\delta_{1..n} :: c_i \rightarrow a_i \uparrow^* a_0 :: \delta_{m..|\delta|}}_{max\varsigma[a]} \text{ with } \delta_{m..|\delta|} \in \gamma_{\varsigma'}(\omega)$
 $\Longrightarrow max\varsigma[a] = \{a_0\} \text{ and } max\varsigma[c] = \{c_i\}.$

$$\gamma_{(a_1,b_0)}(a_1 \stackrel{\wedge}{\vdash} a_0 :: b_0 \stackrel{\wedge}{\vdash} b_1) \neq \emptyset \implies \gamma_{(a_0,b_0)}(b_0 \stackrel{\wedge}{\vdash} b_1) \neq \emptyset$$

Loïc Paulevé

Goal:
$$\gamma_{\varsigma}(a_1 \uparrow^* a_0 :: \omega) \neq \emptyset \Longrightarrow \gamma_{\max\varsigma}(\omega) \neq \emptyset$$

• By default, use the saturated context of $[\mathcal{A}_{c}^{\omega}]$:

$$\lceil \mathcal{A}_{\varsigma}^{\omega} \rceil = \operatorname{lfp} \left(\mathcal{A}_{\varsigma}^{\omega} \mapsto \mathcal{A}_{\varsigma \cap \operatorname{procs}(\mathcal{A}_{\varsigma}^{\omega})}^{\omega} \right) .$$

•
$$a_0 \notin \varsigma$$
, $\delta \in \gamma_{\varsigma}(a_1 \uparrow^* * a_0 :: \omega)$
 $\Longrightarrow \delta = \delta_{1..n} :: c_i \to a_i \uparrow^* a_0 :: \delta_{m..|\delta|}$ with $\delta_{m..|\delta|} \in \gamma_{\varsigma'}(\omega)$
 $\Longrightarrow \max_{\varsigma}[a] = \{a_0\}$ and $\max_{\varsigma}[c] = \{c_i\}$.

$$\gamma_{\langle a_1,b_0\rangle}(a_1 r^* a_0 :: b_0 r^* b_1) \neq \emptyset \implies \gamma_{\langle a_0,b_0\rangle}(b_0 r^* b_1) \neq \emptyset$$
 FAILURE

Loïc Paulevé

Approximations of Successive Reachability

Over- approximations	 Un-ordered approximation. Ordered approximation. Ordered Approximation with occurences order constraints. 	No / Inconc
	Successive Reachability	
Under- approximations	 Un-ordered approximation. Ordered approximation.	Yes / Inconc

Process Occurrences Order Constraints

 $a_i \triangleleft a_i \iff$ no scenario can be abstracted by $a_i \uparrow^* a_i$.

Uncovering Order Constraints

$$\mathsf{BS}(a_i \, \!\!\!\uparrow^* \!\!\! a_j) = \emptyset \Longrightarrow a_j \vartriangleleft a_i$$

Idea of Over-Approximation

Based on the ordered over-approximation:

• $\min \operatorname{Proc}_{\varsigma}(\omega_n) = \{ p \in \operatorname{Proc} \mid p \text{ occurs in all solutions of } \omega_n \};$

$$\begin{cases} \{a_i \in \varsigma\} & \text{if } n = 0 \\ \min \operatorname{Proc}_{max\varsigma}(\omega_n) & \text{otherwise,} \\ & \text{with } max\varsigma = \max \operatorname{Ctx}(\varsigma, w, n - 1) \end{cases} .$$