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SA of BNs based on Interaction Graphs: a Survey: Introduction

Motivation

Boolean Networks are interesting objects:

• High-level modelling of complex dynamical systems.

• Simple description of the evolution of the components:

f1(x) = x2 ∨ x3, f2(x) = x1 ∧ x3, . . .

But... exponential blow-up of the state space: model-checking is hard.
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Overview

Interaction Graph (of f ):

• Sums up the influences (either + or -) between components.

• Common abstraction (in biology, often the starting point).

• Computation of G(f ) is often fast.
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General idea: G(f ) � P ⇒ f � Q
Pros

• P is generally very fast to check: compact proof of Q.

• There often exists a large amount of f ′ such that G(f ) = G(f ′).

• Help to understand some topological “patterns”.
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Outline

1 Introduction

2 Definitions

3 Static Analysis based on Interaction Graphs
Absence of Cycles
Absence of Positive Cycles
Absence of Negative Cycles
Comparison of Iteration Schemes
Network Reduction

4 Conclusion and Outlook
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Boolean Network, Iteration Graphs

Boolean Network

• n components;

• collection of boolean functions 〈f1, . . . , fn〉;
• fi : Bn → B (B = {0, 1}).

Example: f1(x) = x3 ∧ (x1 ∨ x2), f2(x) = x3, f3(x) = x1 ∨ x2 ∨ x3.

Iteration Graphs

Synchronous IG Asynchronous IG Generalized IG

010 110

000 100

011 111

001 101

010 110

000 100

011 111

001 101

010 110

000 100

011 111

001 101

+ others (skipped).
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Attractors, Fixed points

Attractor
Given an IG Γ, A ⊆ Bn is an attractor iff ∀x → y ∈ Γ, x ∈ A⇒ y ∈ A, and A
is minimal.

Fixed Point: attractor of length 1.

Examples

Synchronous IG Asynchronous IG Generalized IG

010 110

000 100

011 111

001 101

010 110

000 100

011 111

001 101

010 110

000 100

011 111

001 101
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Interaction Graph

• Abstraction of a BN into a signed directed graph G(f ) with n vertices.

• Qualitative influence between components.

• In practice, the interaction graph is easier to know than the precise BN.

Given a BN f , G(f ) is defined by:

• j +−→i ⇔ ∃x , xj = 0, fi(x) < fi(x j);

• j −−→i ⇔ ∃x , xj = 0, fi(x) > fi(x j).

G(f ) is simple if there is at most one arc from i to j .

Example
f1(x) = x3 ∧ (x1 ∨ x2), f2(x) = x3, f3(x) = x1 ∨ x2 ∨ x3

1

2 3

++

+

+

−

+

1 −−→1 : f1(001) > f1(101);

3 +−→2 : f2(000) < f2(001);
...
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Absence of Cycles

Theorem (Robert, 1980)
If G(f ) has no cycle, then f has a unique fixed point x, and every path of
SIG(f ) reaches this fixed point (in at most n steps).

• Proved for AIG(f ) [Robert, 1995].

• Proved for GIG(f ) (and much more) [Bahi and Michel, 2000].

Idea: act as a delayed determinist affectation of components.

1

2 3

+ -

+

f1(x) = 1, f2(x) = x1,
f3(x) = x1 ∨ x2

Sample SIG path:
000→ 101→ 110→ 111.

8/19 Paulevé and Richard
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Absence of Positive Cycles

René Thomas’ conjecture (1980): “a necessary condition for a dynamical
system to admit several stable states is the presence of a positive cycle in its
interaction graph”.

Theorem (Remy, Ruet and Thieffry, 2008)
If G(f ) has no positive cycle, then f has at most one fixed point.

Theorem (Richard and Comet, 2007)
If G(f ) has no positive cycle, then AIG(f ) has at most one attractor.

(valid only for AIG).

Theorem (Aracena, Demongeot and Goles, 2004-2008)
If G(f ) has a minimal in-degree at least one and has no positive cycle, then f
has no fixed point.

9/19 Paulevé and Richard
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Upper bound on fixed points #

Theorem (Aracena, 2008; Richard, 2009)
Let I be a subset of [n]. If every positive cycle of G(f ) has a vertex in I , then
AIG(f ) has at most 2|I | attractors.

Examples

1

2

3

4

5 6

7

++

+

−

−

+

−+

+

+

⇒ 21 FP max

2

4

5

7

++

− +

−

+

+

+

+

⇒ 23 FP max
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Absence of Negative Cycles

René Thomas’ conjecture (1980) : “a necessary condition for a dynamical
system to produce sustained oscillations is the presence of a negative cycle in
its interaction graph”.

Theorem (Richard, 2010)
If G(f ) has no negative cycle, then AIG(f ) has no cyclic attractor.

⇒ if G(f ) has no negative cycle, then f has at least one fixed point (which
can be computed in O(n2)).

11/19 Paulevé and Richard
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Topological Fixed Points

Topological Fixed Point: fixed-ness only depends on the graph topology.
x ∈ Bn is a TFP of f iff ∀h : Bn → Bn,G(f ) = G(h)⇒ h(x) = x .

Theorem (Paulevé and Richard, 2010)
G(f )#: G(f ) with simple arcs only; p = # connected components in G(f )#.
• If the following three conditions hold, f has exactly 2p TFP:

• minimal in-degree of G(f )# is ≥ 1;
• G(f ) has no undirected negative cycle;
• for every i ∈ [n],∃ at most one j such that j +−→i and j −−→i .

• Otherwise, there is no TFP

• If x is a TFP, then x is a TFP.

(generalizes a theorem by Aracena, 2008)

Idea: if there is a positive (undirected) path from i to j , then xi = xj ;
(negative ⇒ xi = xj).

12/19 Paulevé and Richard
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Topological Fixed Points
(continued...)

Example

1

2

3

4
-

-
+

+

+-

• x1 = x4 = x2;

• x2 = x3 = x4.

⇒ 0111 and 1000 are the only 2 TFPs.

Topological Fixed Points can be computed in O(n + m); m = # arcs of G(f ).
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Comparison of Iteration Graphs

Theorem (Noual 2011)
Assume that G(f ):

• is simple,

• has no positive cycle of even length,

• has no negative cycle of odd length.

x → y ∈ GIG(f ) =⇒ AIG(f ) has a path from x to y of length |∆(x , y)|.
Hence, the number of attractors in GIG(f ) and SIG(f ) is at least the number
of attractors in AIG(f ).

14/19 Paulevé and Richard
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Comparison of Iteration Schemes
(continued...)

Examples
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Network Reduction

Let f̃ : Bn−1 → Bn−1 be defined from f : Bn → Bn (n → n /∈ G(f )) by:

∀x ∈ Bn−1, ∀i ∈ [n − 1], f̃i(x) = fi(x̃), x̃ = (x , fn(x , 0)) ∈ Bn.

Theorem (Naldi, Remy, Thieffry, Chaouiya, 2009)

• f̃ (x) = x ⇔ f (x̃) = x̃ ;

• x →∗ y ∈ AIG(f̃ )⇔ x̃ →∗ ỹ ∈ AIG(f );

• parity of paths in G(f̃ ) is the same as in G(f ).
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Network Reduction
(continued...)
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• parity of paths in G(f̃ ) is the same as in G(f ).

17/19 Paulevé and Richard



SA of BNs based on Interaction Graphs: a Survey

Network Reduction
(continued...)

Example

1

23

-

-

+

y ∈ B3
f1(y) = y3
f2(y) = y1
f3(y) = y2

010 110

000 100

011 111

001 101

010

101

1

2

-

-

x ∈ B2
f̃1(x) = f3(x , 0) = x2
f̃2(x) = x1

01 11

00 10

• f̃ (x) = x ⇔ f (x̃) = x̃ ;

• x →∗ y ∈ AIG(f̃ )⇔ x̃ →∗ ỹ ∈ AIG(f );
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Conclusion

• Cycles are necessary to obtain complex behaviours.

• Positive/negative cycles constrain the presence of fixed points/attractors.

• Conditions on cycles: comparison of IGs + network reduction.

Skipped: attractor lengths, more iteraction graphs comparisons, etc.

Extension to Discrete Networks:

• René Thomas’ conjectures OK;

• Reduction OK;

• but not much...
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Outlook

Going further with static analysis of BNs:

• Apply other kind of static analysis?

• More precise properties may need more precise abstractions.

• Analysis of quantitative features...

Related Work:

• [Naldi, Thieffry, Chaouiya, 2007]: decision diagrams to compute fixed
points of BNs (and DNs).

• [Paulevé, Magnin, Roux, SASB’10]: abstract interpretation of
reachability properties through the Process Hitting framework.

• (previous talk?)
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