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The analysis of the dynamics of Biological Regulatory Networks (BRNs) requires innovative

methods to cope with the state-space explosion. This paper settles an original approach for

deciding reachability properties based on Process Hitting, which is a framework suitable for

modelling dynamical complex systems. In particular, Process Hitting has been shown to be

of interest in providing compact models of the dynamics of BRNs with discrete values.

Process Hitting splits a finite number of processes into so-called sorts and describes the way

each process is able to act upon (that is, to ‘hit’) another one (or itself) in order to ‘bounce’

it as another process of the same sort with further actions.

By using complementary abstract interpretations of the succession of actions in Process

Hitting, we build a very efficient static analysis to over- and under-approximate reachability

properties, which avoids the need to build the underlying states graph. The analysis is

proved to have a low theoretical complexity, in particular when the number of processes per

sorts is limited, while a very large number of sorts can be managed.

This makes such an approach very promising for the scalable analysis of abstract complex

systems. We illustrate this through the analysis of a large BRN of 94 components. Our

method replies quasi-instantaneously to reachability questions, while standard

model-checking techniques regularly fail because of the combinatoric explosion of

behaviours.

1. Introduction

Biological Regulatory Networks (BRNs) are a common framework for modelling the

concurrent regulatory mechanisms between biological components (RNA, proteins, and

so on). These regulations are generally represented as interaction graphs, where nodes are

components of the system, and edges state the regulation between them, which is either

positive (activation) or negative (inhibition). Each node is also assigned a numerical value

representing the state (for example, the concentration) of the component of the network,

at a given time. This value evolves in response to the various regulations the component
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is subject to. In 1973, the biologist René Thomas proposed a formalisation of BRNs in

which the values of the components are boolean (Thomas 1973). His formalisation uses

an interaction graph and parameters (or, equivalently, boolean functions between nodes

inputs) to describe the dynamics of a BRN. A full description of the BRN formalism with

discrete values for components can be found in Bernot et al. (2007).

The derivation of dynamical properties from the interaction graph of a BRN has been

the motivation underlying a variety of mathematical studies. Twenty years ago, René

Thomas conjectured that the presence of positive circuits within the interaction graph is

a necessary condition to achieve systems with multi-stationarity. The conjecture has been

proved in several frameworks, notably in discrete dynamical systems (Richard and Comet

2007). By using more elaborated interaction graph analyses, the maximum number of

fixed points within boolean networks can be characterised (Aracena 2008). Under strong

conditions, particular fixed points (qualified as topological) can be fully extracted from

the interaction graph (Paulevé and Richard 2010): these points are fixed in all possible

dynamics matching the interaction graph. Finally, the presence of negative circuits in

interaction graphs has been proved to be necessary for there to be sustained oscillations

in the dynamics (Remy et al. 2008; Richard 2010).

To produce more precise analyses of BRN dynamics, we need to take into account the

boolean functions specified together with the interaction graph (as in Bernot et al. (2008),

for instance). The majority of current techniques use standard model-checking methods

(Richard et al. 2006) based on the (explicit or symbolic) exploration of the state space

of the model. Such methods suffer from a state-space explosion, and are intractable for

large regulatory networks. We propose in this paper a novel and original method relying

on the Process Hitting framework to address this scalability issue.

Process Hitting (Paulevé et al. 2011b) is a recently introduced framework that is

suitable for modelling BRNs with discrete values. Basically, each discrete component

value is modelled as a process; at any time, one and only one process of each component

(referred to as a sort) is present and stands for the current state of the component. A

sort changes process when it is hit by at most one other process. Static analyses have

already been developed in the Process Hitting framework, notably for obtaining all the

fixed points of dynamics of a Process Hitting (Paulevé et al. 2011b). Being a particular

restriction of Communicating Finite-State Machines (Brand and Zafiropulo 1983), Process

Hitting can be applied to less specific complex dynamical systems.

The static analysis by abstract interpretation (Cousot and Cousot 1977) aims to provide

an efficient analysis of a program without executing it. This is achieved by constructing

one, or several, sound abstractions of the semantics of the program; these abstractions

are then interpreted to decide the validity of a given property, resulting in over- or under-

approximations of the validity of the property in the concrete program. From now on, we

will refer to this validity as the concretisability of the abstract property.

In this paper, we present a novel static analysis by abstract interpretation of Process

Hittings. We address the decision of a successive reachability of processes. Our approach

is based on two complementary abstractions of a succession of actions within a Process

Hitting. Several refinement operators acting on these two abstractions are then defined.

These refinements detail an abstraction, with the aim of simplifying the concretisability

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 13 Jul 2012 IP address: 129.132.29.35

Static analysis of BRNs dynamics using abstract interpretation 653

decision. We then use the abstraction refinement operators to develop over- and under-

approximations of the process reachability decision. The implementations rely on the

analysis of an abstract structure, which can be represented as a graph. We show that

this abstract structure always has a reasonable size (that is, it is polynomial in the total

number of processes); and, while its computation can be exponential in the number of

processes within a single sort, the approximations are always linear or polynomial in its

size.

The scalability of our approach is illustrated by its application to the decision of

reachability of gene expression levels within a BRN of 94 components. Our methods

produce very fast responses for the decision, while the well-established symbolic model

checking technique SDD (Hamez et al. 2009) regularly fails because of the state-space

explosion.

A preliminary version of these results was presented in Paulevé et al. (2011a). The current

paper extends the results given in that paper in several ways: the general framework for

presenting the analyses has been substantially reworked and unified; the conclusiveness

of the overall method has been greatly improved; and the BRN application case has been

extended from 40 to 94 components.

Structure of the paper

The Process Hitting framework is defined in Section 2. Section 3 gives a brief and

simplified overview of the results presented in this paper. Section 4 presents complementary

abstractions of scenarios (that is, sequences of actions) and defines the abstraction

refinement operators. These refinement operators are then applied to the over- and under-

approximation of process reachability in Section 5, and details of their implementation

and complexity are given. Section 6 briefly presents the encoding of BRN dynamics

into Process Hittings and applies the above methods to a large BRN relating 94

components. Finally, Section 7 summarises and discusses the contributions of this

paper.

Notation

Given a finite set S = {e1, . . . , en}, we write |S | ∆
= n, and we write ℘(S) to denote the

power set.

Given a finite sequence of elements A = e1 :: . . . ::en:

— |A| = n is the length of the sequence;

— �A
∆
= {1, . . . , |A|} is the set of A indexes;

— ∀i ∈ �A, Ai = ei;

— ε is the empty sequence;

— Ai..j is the subsequence Ai, . . . , Aj;

— Ai..j = ε if j < i.

lfp{x0}
(
x �→ x′) is the least fixpoint greater than x0, if it exists, of the monotonic

function f(x)
∆
= x′; and gfp f is the greatest fixpoint of f, if it exists.
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2. The Process Hitting Framework

This section presents the Process Hitting framework (Paulevé et al. 2011b) on which the

methods presented in this paper rely.

Process Hitting gathers a finite number of concurrent processes grouped into a finite

set of sorts. A process belongs to one and only one sort and is denoted by ai where a is

the sort and i the identifier of the process within the sort a. At any time, one and only

one process of each sort is present, forming a state of the Process Hitting.

The concurrent interactions between processes are defined by a set of actions. Actions

describe the replacement of one process by another of the same sort conditional on the

presence of at most one other process in the current state of the Process Hitting. An

action is denoted by ai→bj �bk where ai, bj , bk are processes of sorts a and b. It is required

that bj �= bk and that a = b ⇒ ai = bj . An action h = ai→bj �bk is read as ‘ai hits bj to

make it bounce to bk ’, and ai, bj , bk are called the hitter, target and bounce of the action,

respectively, and will be denoted by hitter(h), target(h), bounce(h), respectively.

Definition 2.1 (Process Hitting). A Process Hitting is a triple (Σ, L,H):

— Σ = {a, b, . . . } is the finite countable set of sorts.

— L =
∏

a∈Σ La is the set of states with La = {a0 . . . ala} the finite and countable set of

processes of sort a ∈ Σ and la a positive integer with

a �= b ⇒ ∀(ai, bj) ∈ La × Lb, ai �= bj .

— The finite set of actions is

H = {ai→bj �bk, · · · | (a, b) ∈ Σ2, (ai, bj , bk) ∈ La × Lb × Lb, bj �= bk, a = b ⇒ ai = bj}.

Proc denotes the set of all processes (Proc = {ai | a ∈ Σ ∧ ai ∈ La}).

We write Σ(ai) = a to denote the sort of a process ai, and

Σ(h) = {Σ(hitter(h)),Σ(target(h))}

to denote the set of sorts present in an action h ∈ H. Given a state s ∈ L, the process

of sort a ∈ Σ present in s is denoted by s[a], which is the a-coordinate of the state s. We

define the following notation:

— if ai ∈ La, ai ∈ s
∆⇔ s[a] = ai; and

— if ps ∈ ℘(Procs), ps ⊆ s
∆⇔ ∀ai ∈ ps, ai ∈ s.

An action h = ai→bj �bk ∈ H is playable in s ∈ L if and only if s[a] = ai and s[b] = bj .

In such a case, (s · h) stands for the state resulting from the play of the action h in s,

that is, (s · h)[b] = bk and ∀c ∈ Σ, c �= b, (s · h)[c] = s[c]. For clarity, ((s · h) · h′), h′ ∈ H is

abbreviated as (s · h · h′).

If A is a sequence of actions, the set of sorts present in A is given by Σ(A) =
⋃

n∈�A Σ(An).

We write fsta(A) to denote first process of sort a appearing in the sequence, and lasta(A)
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for the last one:

fsta(A)
∆
=

⎧⎪⎪⎨⎪⎪⎩
� if a /∈ Σ(A)

hitter(Am) if m = min{n ∈ �A | a ∈ Σ(An)} ∧ Σ(hitter(Am)) = a

target(Am) if m = min{n ∈ �A | a ∈ Σ(An)} ∧ Σ(target(Am)) = a

(1)

lasta(A)
∆
=

⎧⎪⎪⎨⎪⎪⎩
� if a /∈ Σ(A),

bounce(Am) if m = max{n ∈ �A | a ∈ Σ(An)} ∧ Σ(bounce(Am)) = a

hitter(Am) if m = max{n ∈ �A | a ∈ Σ(An)} ∧ Σ(hitter(Am)) = a.

(2)

Among the sequences of actions, the particular sequences that are only composed of

successively playable actions form scenarios (see Definition 2.2). A scenario δ is said to

be playable in a state s ∈ L if and only if δ1 is playable in s and for all n ∈ �δ, n < |δ|,
we have δn+1 is playable in the state (s · δ1 · . . . · δn); or, equivalently, δ is playable in s

if and only if support(δ) ⊆ s, where support(δ) is the set of processes that are the first

ones appearing in δ for their respective sort (see Equation (3)). If it is playable, the state

resulting from the sequential play of the scenario in s is denoted by s · δ. During the play

of δ, only target processes change (this set is given by {p ∈ Proc | ∃n ∈ �δ, p = target(δn)}).
It is easy to show that

∀ai ∈ end(δ), (s · δ)[a] = ai

∀b ∈ Σ \ Σ(δ), (s · δ)[b] = s[b];

where end(δ) is defined in Equation (4).

Definition 2.2 (Scenario (Sce)). Given a Process Hitting (Σ, L,H), a scenario δ is a

sequence of actions in H such that for all n ∈ �δ , ai = hitter(δn) (respectively, target(δn)) ⇒
lasta(δ1..n−1) ∈ {�, ai}. The set of all scenarios is denoted by Sce. The functions support(δ)

and end(δ) give the first and last processes of each sort, respectively:

support(δ)
∆
= {p ∈ Proc | Σ(p) ∈ Σ(δ) ∧ p = fstΣ(p)(δ)} (3)

end(δ)
∆
= {p ∈ Proc | Σ(p) ∈ Σ(δ) ∧ p = lastΣ(p)(δ)} . (4)

Example 2.3. Figure 1 represents a Process Hitting (Σ, L,H) where

Σ = {a, b, c, d}
L = {a0, a1} × {b0, b1, b2} × {c0, c1} × {d0, d1, d2}

H = {a0→c0 �c1, a1→b1 �b0, c1→b0 �b1, b1→a0 �a1,

b0→d0 �d1, b1→d1 �d2, d1→b0 �b2, c1→d1 �d0, b2→d0 �d2}.

Playing the action b1→ a0 � a1 in the state 〈a0, b1, c0, d0〉 results in the state 〈a1, b1, c0, d0〉.
Then

δ = a0→c0 �c1 ::b1→a0 �a1 ::a1→b1 �b0 ::b0→d0 �d1 ::d1→b0 �b2
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a

0

1

b

0

1

2

d

0

1

2

c

0 1

Figure 1. A Process Hitting example: sorts are represented by labelled boxes, and processes by

circles (ticks are the identifiers of the processes within the sort, for instance, a0 is the process ticked

0 in the box a). An action (for instance a0→c0 �c1) is represented by a pair of directed arcs, having

the hit part (a0 to c0) in plain line and the bounce part (c0 to c1) in dotted line. The reachability of

the process d2 (double circled) is studied in next sections. The current state is represented by the

grayed processes: 〈a0, b1, c0, d0〉.

is a scenario playable in the state

s = 〈a0, b1, c0, d0〉
s · δ = 〈a1, b2, c1, d1〉

with

support(δ) = {a0, b1, c0, d0}
end(δ) = {a1, b2, c1, d1}.

Remark 2.4. The Process Hitting framework can be considered as a class of Communic-

ating Finite-State Machines (Brand and Zafiropulo 1983) where at most two machines

(sorts) share a synchronisation label (action) and one and only one machine changes its

state (process) at each synchronisation (action play).

3. Overview of the results obtained

In this section we give a brief overview of the results obtained on the static analysis of

reachability properties using Process Hitting. For simplicity, we focus on the practical

use of the analyses developed, skipping the detailed definitions and proofs, which will be

given in the following sections.
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3.1. General approach

We define the Process Hitting PH = (Σ, L,H) on which we want to check the successive

reachability property R as follows: given a state s ∈ L, there exists a scenario such that

whenever some actions are performed, the process ai is present, then, after some other

actions, the process bj is eventually present, and so on. This can be compared with CTL

(Clarke and Emerson 1981), with a recursive EF (exists eventually) property where atoms

simply check the presence of a given process.

In the context of Process Hitting, the current paper proves some properties, say P and

Q, respectively, allowing the over- and under-approximation of the property R:

— If PH does not verify P, the reachability R is impossible (over-approximation of R).

— If PH verifies Q, the reachability R is possible (under-approximation of R).

The properties P and Q can be checked statically and efficiently, allowing a fast over-

and under-approximation of R. We will now give a brief sketch of these properties.

3.2. Complementary abstractions of scenarios

We develop two complementary scenario abstractions in Section 4. Both are based on the

notion of an objective, which specifies the bounce (after some actions) from one process

to another of the same sort (for example, d0 �∗d2 is an objective).

The first abstraction, which is called the objective sequences, gives a sparse description

of the successive reachability of processes within a scenario, and can be used to stand

for the reachability property R. For example, b0 �∗b2::d0 �∗d2 abstracts all scenarios

such that, starting with b0 and d0 present, and after some actions, b2 is present, and

then, after some actions, d2 is present, with any other actions taking place in between

ignored.

The second abstraction, which is called the bounce sequences, describes the local actions

resolving a given objective (that is, hitting processes of the sort of the objective). For

example, b0 → d0 � d1::b1 → d1 � d2 is a bounce sequence for the objective d0 �∗d2 and

abstracts any scenario using these actions in the same order. The results of this paper

mainly use abstract bounce sequences, which are the set of hitters of the bounce sequence

(for example, {b0, b1} for the previous example), thereby abstracting the order of actions.

An interesting feature of such abstractions is that they are statically completely computable

from the definition of the Process Hitting, thus providing the necessary (local) actions for

resolving any given objective.

Such abstractions are complementary in the sense that they are concerned with different

information, which may be combined to refine a given abstraction, that is, to incorporate

some additional knowledge into it. Basically, while objective sequences describe successions

of objectives to perform, bounce sequences describe the necessary steps to achieve such

objectives. The refinement operators (see Section 4.4) take advantage of such information

to refine a given objective sequence by merging into it the necessary intermediate objectives

given by the associated bounce sequences.
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3.3. Abstract structures of process hitting

In order to give an efficient representation of the relations between the various objectives

and their associated bounce sequences, we will give several graphical representations

describing the abstract structures of a given Process Hitting.

Figure 2 gives two instances of such graphs for the Process Hitting drawn in Figure 1.

These graphs relate three types of nodes: processes (square nodes), objectives and solutions

(circles) representing an abstracted bounce sequence. In particular:

— processes are related to the objectives describing their reachability;

— objectives are related to solutions corresponding to associated abstract bounce se-

quences (objectives can also be related to other objectives sharing the same bounces);

and

— solutions are related to processes composing the associated abstract bounce sequence.

Objectives without solutions are annotated with the ⊥ symbol.

Such structures have the advantage of having a limited size with a low complexity for

their construction: polynomial in the number of processes and exponential in the number

of processes within one sort (which is expected to be very small).

In this paper, we use the two abstract structures A and �B� to compute P (over-

approximation) and Q (under-approximation) properties, respectively. The construction

of A is recursive: starting from processes to which the reachability is specified by R, we

relate processes to the objective reaching them from the initial state (imposed by R); we

then compute all the solutions for each objective (that is, the associated abstract bounce

sequences). The construction of �B� is similar, except that some solutions may be ignored:

if a process ai is referenced in �B�, all the processes of sort a in �B� are related to an

objective starting from ai.

The top and bottom diagrams in Figure 2(top) show the structures A and �B�,
respectively, computed from the Process Hitting drawn in Figure 1 for the reachability of

process d2 from the initial state 〈a1, b0, c0, d1〉 for A and 〈a1, b1, c1, d0〉 for �B�.

3.4. Main static properties for successive reachability analysis

Using the previously introduced abstract structures, we will describe in Section 5 the

three over-approximation properties P1, P2, P3 (P = P1 ∨ P2 ∨ P3) and the two under-

approximation properties Q1, Q2 (Q = Q1 ∨ Q2) developed in this paper for deciding the

possibility of the successive reachability property R.

— P1 (see Theorem 5.7): there exists a traversal of A starting from each process in R
such that: there is no loop; and from an objective node, at least one related solution is

traversed, and from any other node, all related nodes are traversed.

The top diagram in Figure 2 gives an example of an abstract structure A that does not

verify P1: the reachability is then proved to be impossible.

— Q1 (see Theorem 5.29): �B� has no cycle and all its leaves are solution nodes.

The bottom diagram in Figure 2 shows an example of an abstract structure �B� that

verifies Q1: the reachability is then proved to be possible.
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d1 �∗ d2

d2

b2 b0 �∗ b2 d1 d1 �∗ d1

b1 b0 �∗ b1 c1 c0 �∗ c1 a0 a1 �∗ a0⊥

d0 �∗ d2

d2

b0 b1 �∗ b0 a1 a1 �∗ a1

b0 �∗ b0

b1 b1 �∗ b1

b0 �∗ b1 c1 c1 �∗ c1

Figure 2. The top diagram shows the abstract structure A of the Process Hitting in Figure 1 for

the reachability of d2 from the state 〈a1, b0, c0, d1〉. The bottom diagram shows the abstract

structure �B� for the reachability of d2 from the state 〈a1, b1, c1, d0〉.

Properties P1 and Q1 are said to be unordered since the order of the requested

reachabilities in R is ignored. Properties P2 and Q2 take advantage of this sequentiality

through an iterative reasoning procedure. If R1 denotes R truncated at its first reachability

and R2.. denotes the remaining reachabilities (with a modified initial state, which we do

not describe here), we have the following results:

— P2 (see Theorem 5.15): P1 is verified with R1 and P2 is verified with R2...

— Q2 (see Corollary 5.32: Q1 is verified with R1 and Q2 is verified with R2...

Finally, in the case of the over-approximation of R, a property P3 exploits ordering

constraints between occurrences of processes that are statically extracted from the Process

Hitting. We write q � p if the process q cannot occur after p:

— P3 (see Theorem 5.23): For all n < m, for each p ∈ minProc(Rn..) and q ∈ minProc(Rm..),

we have ¬(q � p),

where minProc denotes the processes necessary for achieving Rn.. (respectively, Rm..).

The computation of P also provides a set of so-called key processes for satisfying R. If

zl is such a key process, and PH \ zl denotes the Process Hitting PH without the actions

related to zl , then:

— If PH verifies P, then PH \ zl does not satisfy P.

Such a property is very interesting in the context of controlling the reachability R:

disabling a key process ensures that no scenario can concretise R.
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PH Sce

BS OS

BS∧
a
b
st

r
(3

.3
)

abstr
(3.2)ab

st
r
(3
.3
)

ρ

(3.4.1) ρ∧

(3.4.2)

Figure 3. Derivation relations between a Process Hitting (PH), scenarios (Sce), objective sequences

(OS – see Section 4.2), bounce sequences (BS and BS∧ – see Section 4.3) and refinement operators

(for example, ρ and ρ∧ – see Section 4.4). The relations shown with thick lines are used in

Section 5 to decide the concretisability of an objective sequence.

As for the complexity, these properties can be checked in time polynomial in the size

of the abstract structures. In the case of the Q1 (under-approximation), a more conclusive

checking can be achieved, but at the cost of being exponential in the number of solutions

for a single objective.

Therefore, we expect these new analyses will be very efficient using Process Hitting since

they have a limited number of processes per sort, but a very large number of sorts.

In the folowing sections, we will specify successive reachability properties by objective

sequences, and extend the notion of an initial state to the notion of a context (a set of

initial states).

4. Abstract interpretation of scenarios

Having introduced the preliminary definitions in Section 4.1, we will now establish two

orthogonal abstractions of scenarios using objective sequences (see Section 4.2) and bounce

sequences (see Section 4.3). The first of these abstractions describes a succession of process

changes per sort (called objectives), and the second describes the actions actually played to

resolve these objectives. While objective sequences can be seen as a sparse representation

of a scenario, bounce sequences emphasise the necessary actions required to resolve an

objective.

Using these two complementary abstractions, we will derive several objective sequence

refinement operators in Section 4.4. The aim of these refinements is to provide more

precise abstractions through which the concretisability may be easier to decide. Figure 3

summarises the possible derivations between a Process Hitting and the different scenario

representations.

4.1. Preliminaries

This section introduces the notions of an objective and a context that we will use in

developing the abstractions.
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Definition 4.1 (objective (Obj)). The reachability of process aj from a process ai is called

an objective, and is denoted by ai �∗aj . The set of objectives is denoted by

Obj
∆
= {ai �∗aj | a ∈ Σ ∧ (ai, aj) ∈ L2

a}.

Given an objective P ∈ Obj, where P = ai �∗aj , we have

Σ(P ) = a

target(P ) = ai

bounce(P ) = aj .

An objective P is trivial if target(P ) = bounce(P ).

We will now extend the notion of a state to the notion of a context. A context references

the set of processes per sort that can serve as an initial state.

Definition 4.2 (context ς (Ctx)). A context ς associates with each sort in Σ a non-empty

subset of its processes:

∀a ∈ Σ, ς[a] ⊆ La ∧ ς[a] �= �.

We use Ctx to denote the set of contexts.

Given a context ς, we write ai ∈ ς
∆⇔ ai ∈ ς[a], and, moreover, given ps ∈ ℘(Proc), we

write ps ⊆ ς
∆⇔ ∀ai ∈ ps, ai ∈ ς. The override of a context ς by a set of processes ps is

denoted by ς � ps (see Definition 4.3). For instance,

〈a1, a2, b1, c1〉 � {a3, b2, b3} = 〈a3, b2, b3, c1〉.

Definition 4.3 (� : Ctx ×℘(Proc) �→ Ctx). Given a context ς ∈ Ctx and ps ∈ ℘(Proc), the

override of ς by ps is denoted by ς � ps and is defined by

∀a ∈ Σ, (ς � ps)[a]
∆
=

{
{p ∈ ps | Σ(p) = a} if ∃p ∈ ps,Σ(p) = a

ς[a] otherwise.

A scenario δ ∈ Sce is playable in the context ς if and only if support(δ) ⊆ ς. The play of

δ in ς is denoted by ς · δ where ς · δ = ς � end(δ).

Example 4.4 (Process Hitting in Figure 1). Given the context

ς = 〈a0, b0, b1, c0, d1〉

and the scenario

δ = a0→c0 �c1 ::b1→a0 �a1 ::b1→d1 �d2,

δ is playable in ς and

ς · δ = 〈a0, b0, b1, c0, d1〉 � {a1, b1, c1, d2} = 〈a1, b1, c1, d2〉.
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4.2. Abstraction of scenarios into objective sequences

During the execution of a scenario, processes of different sorts bounce one after the other,

following the play of the actions. An abstraction of such an execution is a succession

of objectives: the process aj is reached (after a certain number of actions) from ai, then

the process bj is reached from bi, and so on. This forms an objective sequence (see

Definition 4.5). The appending of an objective to an objective sequence is defined in

Definition 4.6.

Definition 4.5 (objective sequence (OS)). An objective sequence is a sequence ω = P1 ::

. . . ::P|ω|, where:

∀n ∈ �ω, ωn ∈ Obj

and

ai = target(ωn) ⇒ lasta(ω1..n−1) ∈ {�, ai}.
The set of objective sequences is denoted by OS. The definitions of lasta (see Equation (2)),

fsta (see Equation (1)), support (see Equation (3)) and end (see Equation (4)) are

straightforwardly extended to objective sequences by omitting the hitter case.

Definition 4.6 (⊕ : OS × Obj �→ OS). The join between an objective sequence ω ∈ OS

and an objective ai �∗aj ∈ Obj is defined by

ω ⊕ ai �
∗aj

∆
=

{
ω ::ai �∗aj if a /∈ Σ(ω)

ω :: lasta(ω)�∗aj otherwise.

Example 4.7. The sequence

ω = a0 �∗a1 ::b0 �∗b2 ::d0 �∗d1

is an objective sequence where

support(ω) = {a0, b0, d0}
end(ω) = {a1, b2, d1}

ω ⊕ d0 �∗d2 = ω ::d1 �∗d2.

A scenario can be abstracted by several objective sequences, which describe process

changes more or less sparsely. For instance, the scenario

a0→c0 �c1 ::b1→a0 �a1 ::a1→b1 �b0 ::b0→d0 �d1 ::d1→b0 �b2

can be abstracted to

c0 �∗ c1 ::a0 �∗ a1 ::b1 �∗ b0 ::d0 �∗ d1 ::b0 �∗ b2;

or, more sparsely, to

a0 �∗ a1 ::b1 �∗ b2;

or to

b1 �∗ b2;
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and so on (processes written in bold are the ones kept in the succeeding abstrac-

tion).

The set of scenarios concretising an objective sequence ω in a context ς is given by

γς(ω) (see Definition 4.8). We can also define the concretisation of a set of objective

sequences as the union of their concretisations (see Definition 4.9).

Definition 4.8 (γς : OS �→ ℘(Sce)). Given ω ∈ OS, γς(ω) is the set of scenarios concretising

ω in the context ς:

γς(ω)
∆
= {δ ∈ Sce |(ω� = ε ∧ δ = ε) ∨ (ω� �= ε ∧ support(δ) ⊆ ς

∧ ∃φ : �ω �→ �δ, (∀n, m ∈ �ω, n < m ⇔ φ(n) � φ(m))

∧ ∀n ∈ �ω, bounce(ωn) ∈ ς · δ1..φ(n))}

where we write ω� for the objective sequence ω with the trivial objectives removed.

Definition 4.9 (γς : ℘(OS) �→ ℘(Sce)). γς(Ω)
∆
= {δ ∈ γς(ω) | ω ∈ Ω}.

Note that the concretisation of an objective sequence ω does not depend on its support

support(ω) since it is imposed by the context. In this way, we use 	�∗ai to denote explicitly

the fact that the target of the objective can be any process of sort a present in the context:

∀aj ∈ ς[a], γς(aj �∗ai) = γς(	�∗ai). (5)

Example 4.10 (Process Hitting in Figure 1). Given the context

ς = 〈a0, b0, b1, c1, d1〉

and the objective sequence ω = 	�∗b2 ::	�∗d2, the following is an extract of the (infinite)

set of concrete scenarios:

γς(ω) = {d1→b0 �b2 ::c1→d1 �d0 ::b2→d0 �d2,

b1→a0 �a1 ::a1→b1 �b0 ::d1→b0 �b2 ::c1→d1 �d0 ::b2→d0 �d2,

c1→b0 �b1 ::b1→a0 �a1 ::a1→b1 �b0 ::d1→b0 �b2 ::c1→d1 �d0 ::b2→d0 �d2,

. . .}.

Given the context ς = 〈a0, b1, b2, c0, d2〉, we get γς(	�∗c1 ::	�∗a0) = �.

Finally, we use ας to denote the reverse operation of concretisation of a set of scenarios

(see Definition 4.11): the abstraction of a scenario δ is the set of objective sequences ω

for which δ is a concretisation (δ ∈ γς(ω)).

Definition 4.11 (ας : ℘(Sce) �→ ℘(OS)).

ας(∆)
∆
= {ω ∈ OS | ∃δ ∈ ∆, δ ∈ γς(ω)}.

The relation between γς and ας is emphasised by Property 4.12: the concretisation of the

abstraction of a set of scenarios ∆ includes ∆. This relation gives an abstract interpretation

framework (Cousot and Cousot 1992) that is sufficient for the results presented in this

paper.
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Property 4.12. ∀∆ ∈ ℘(Sce),∆ ⊆ γς(ας(∆)).

Proof. ∀δ ∈ ∆, there exists ω ∈ OS such that δ ∈ γς(ω) (see Definition 4.8). Hence,

ω ∈ ας(∆) (see Definition 4.11), therefore δ ∈ γς(ας(∆)).

4.3. Abstraction of scenarios into bounce sequences

Bounce sequences result from a local reasoning on a single sort a. Bouncing from ai to

aj (that is, resolving the objective ai �∗ aj) may require the play of several actions on

processes of sort a, forming a bounce sequence (see Definition 4.13). Note that bounce

sequences are generally not scenarios: for example, bi→ ai � aj :: bj→ aj � ak is a bounce

sequence but not a scenario if bi �= bj .

The targets and bounces of all actions in a bounce sequence ζ share the same sort Σ(ζ).

We will not consider bounce sequences that contain cycles between targets and bounces

of actions. In this way, the maximum length of a bounce sequence for a sort a is the

number of processes of sort a.

Definition 4.13 (bounce sequence (BS)). A bounce sequence ζ is a sequence of actions

such that ∀n ∈ �ζ , n < |ζ|, bounce(ζn) = target(ζn+1). We will write BS to denote the set of

bounce sequences, and BS(P ) to denote the set of bounce sequences resolving the objective

P :

BS(ai �
∗aj)

∆
= {ζ ∈ BS |target(ζ1) = ai ∧ bounce(ζ|ζ|) = aj

∧ ∀m, n ∈ �ζ , n > m, bounce(ζn) �= target(ζm)}.

It is obvious that

BS(ai �
∗ai) = {ε},

and that

BS(ai �
∗aj) = �

if there is no possibility of reaching aj from ai.

The full set of bounce sequences can be computed directly from the set of actions H of

the Process Hitting without any enumeration of scenarios. Given an objective ai �∗ aj , the

computation of bounce sequences BS(ai �∗ aj) (see Definition 4.13) works by a depth-first

research between actions on the sort a to form a bounce sequence without cycles. Such a

computation is exponential in the number of actions on the sort a, and is thus efficient

when this number is small compared with the total number of actions.

We will also consider a sparse representation of a bounce sequence ζ resolving an

objective P by considering the set of hitters of its actions that have a different sort than

that of P . We write BS∧(P ) to denote the set of such abstracted bounce sequences.

Definition 4.14 (BS∧ : Obj �→ ℘(Proc)).

BS∧(P )
∆
= {ζ∧ | ζ ∈ BS(P ) ∧ �ζ ′ ∈ BS(P ), ζ ′∧ � ζ∧}

where

ζ∧ ∆
= {hitter(ζn) | n ∈ �ζ ∧ Σ(hitter(ζn)) �= Σ(P )}.
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Note that BS∧(P ) can be computed directly from the Process Hitting in the same way as

BS(P ), but even more efficiently since only minimal sets of hitters are kept after pruning

redundant explorations.

The relations of abstractions and concretisations between scenarios and (abstracted)

bounce sequences can be derived easily, so the details are not given here.

Example 4.15 (Process Hitting in Figure 1). ζ = a1 → b1 � b0 :: d1 → b0 � b2 is the only

bounce sequence resolving the objective b1 �∗ b2:

BS(b1 �∗ b2) = {ζ}

and

BS∧(b1 �∗ b2) = {{a1, d1}}.

4.4. Objective sequence refinements

Before introducing the objective sequence refinement operators, we will define the relation

�OS between two objective sequences (see Definition 4.16). Basically, if ω �OS ω′, we say

ω is a more precise abstraction than ω′, hence γς(ω) ⊆ γς(ω
′) (see Property 4.18). In such

a setting, an objective sequence joined to an objective is a more precise abstraction than

the objective alone (see Property 4.19).

Definition 4.16 (�OS⊂ OS × OS). ω �OS ω′ if and only if the following properties are

satisfied:

— |ω| � |ω′|;
— there exists a mapping φ : �ω

′ �→ �ω such that

∀n ∈ �ω
′
, bounce(ω′

n) = bounce(ωφ(n))

and

∀n, m ∈ �ω
′
, n < m ⇔ φ(n) < φ(m).

Example 4.17. We have

b0 �∗b1 ::a0 �∗a1 ::b1 �∗b2 �OS a0 �∗a1 ::b0 �∗b2 �OS b0 �∗b2,

but

b0 �∗b1 ��OS b0 �∗b2.

Property 4.18. ω �OS ω′ =⇒ γς(ω) ⊆ γς(ω
′).

Property 4.19. Given ω ∈ OS and P ∈ Obj, we have ω ⊕ P �OS P .

Finally, given an objective P , BSς(P ) (see Definition 4.20) and BS∧
ς (P ) (see Defini-

tion 4.21), we can generalise BS(P ) and BS∧(P ) to the scope of the context ς, respectively.

Definition 4.20 (BSς : Obj �→ ℘(BS)).

BSς(	�∗aj)
∆
=

⋃
ai∈ς[a] BS(ai �∗aj).
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Definition 4.21 (BS∧
ς : Obj �→ ℘(℘(Proc))).

BS∧
ς (	�∗aj)

∆
=

⋃
ai∈ς[a] BS∧(ai �∗aj).

4.4.1. Objective refinement by BS (ρ). We will now build the function β such that, given

an objective sequence P , a bounce sequence ζ ∈ BS(P ) is abstracted by β(ζ) to the objective

sequence describing the successive reachability of its hitters (see Definition 4.22). From

the definition of BSς, if a scenario concretises P in context ς, it necessarily concretises

one bounce sequence ζ ∈ BSς(P ), so β(ζ). The refinement operator ρ(P ,BSς(P )) extends

P to the set of objective sequences where P is prefixed by each β(ζ), ζ ∈ BSς(P ) (see

Definition 4.23). Finally, Lemma 4.25 states the correctness of this refinement, which

ensures the preservation of the concretisation set.

Definition 4.22 (β : BS �→ ℘(OS)).

β(ζ)
∆
= {ω ∈ OS | |ω| = |ζ| ∧ ∀n ∈ �ζ , bounce(ωn) = hitter(ζn)}.

Definition 4.23 (ρ : Obj × ℘(BS) �→ ℘(OS)).

ρ(P , zs)
∆
= {ω ⊕ P | ω ∈ β(ζ), ζ ∈ zs}.

Example 4.24 (Process Hitting in Figure 1). Given the objective d0 �∗d2, from Defini-

tion 4.13, we know that

BS(d0 �∗d2) = {b0→d0 �d1 ::b1→d1 �d2, b2→d0 �d2}.

From Definition 4.22, we obtain

β(b0→d0 �d1 ::b1→d1 �d2) = {	�∗b0 ::b0 �∗b1}
β(b2→d0 �d2) = {	�∗b2}.

Hence,

ρ(d0 �∗d2,BS(d0 �∗d2)) = {	�∗b0 ::b0 �∗b1 ::d0 �∗d2,

	�∗b2 ::d0 �∗d2}.

Lemma 4.25. γς(P ) = γς(ρ(P ,BSς(P ))).

Proof.

(⊇) We have

∀ω ∈ ρ(P ,BSς(P )), ω �OS P ,

so

γς(P ) ⊇ γς(ρ(P ,BSς(P ))).

(⊆) By the definition of BSς(P ), we have

∀δ ∈ γς(P ), ∃ω ∈ ρ(P ,BSς(P )), δ ∈ γς(ω),
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so

γς(P ) ⊆ γς(ρ(P ,BSς(P ))).

4.4.2. Objective refinement by BS∧ (ρ∧). The refinement of an objective P by BS∧ is

done in a similar way. A set of hitters ps ∈ BS∧(P ) is abstracted by β∧(ps) into the

set of objective sequences describing any ordering of the reach of these hitters. The

relation between objective sequences in β(ζ) and in β∧(ps) is emphasised in Property 4.27.

The refinement ρ∧(P ,BS∧
ς (P )) is presented in Definition 4.28, and the preservation of

concretisations is stated in Lemma 4.30.

Definition 4.26 (β∧ : ℘(Proc) �→ ℘(OS)).

β∧(ps)
∆
= {ω ∈ OS | |ω| = |ps| ∧ ∀p ∈ ps, ∃n ∈ �ω, bounce(ωn) = p}.

Property 4.27. ∀ζ ∈ BS(P ), ∀ω ∈ β(ζ), ∃ω′ ∈ β∧(ζ∧), ω �OS ω′.

Definition 4.28 (ρ∧ : Obj × ℘(℘(Proc)) �→ ℘(OS)).

ρ∧(P , pss)
∆
= {ω ⊕ P | ω ∈ β∧(ps), ps ∈ pss}.

Example 4.29 (Process Hitting in Figure 1). Given the objective d0 �∗d2, from Defini-

tion 4.14, we know that BS∧(d0 �∗d2) = {{b0, b1}, {b2}}. From Definition 4.26, we obtain

β∧({b0, b1}) = {	�∗b0 ::b0 �∗b1, 	�∗b1 ::b1 �∗b0, }
β∧({b2}) = {	�∗b2}.

Hence,
ρ∧(d0 �∗d2,BS∧(d0 �∗d2)) = {	�∗b0 ::b0 �∗b1 ::d0 �∗d2,

	�∗b1 ::b1 �∗b0 ::d0 �∗d2,

	�∗b2 ::d0 �∗d2}.

Lemma 4.30. γς(P ) = γς(ρ
∧(P ,BS∧

ς (P ))).

Proof.

(⊇) We have

∀ω ∈ ρ∧(P ,BS∧
ς (P )), ω �OS P .

(⊆) By Property 4.27, we have

∀ω ∈ ρ(P ,BSς(P )), ∃ω′ ∈ ρ∧(P ,BS∧
ς (P )), ω �OS ω′,

so γς(ρ(P ,BSς(P )) ⊆ γς(ρ
∧(P ,BS∧

ς (P )).

4.4.3. Objective sequence refinements (ρ̃). Finally, to generalise the refinements defined

on an objective to objective sequence, we show an objective sequence refinement operator

that uses any of the above refinements. We take the operator ρ as an example and

define the refinement ρ̃(ω,BS) (see Definition 4.32). Basically, this refinement chooses any

objective ωn of the objective sequence, refines it using ρ and returns all the interleaving

of the resulting refined sequences with the objective sequence ω1..n−1 (see Definition 4.31).

The concretisation set is then preserved (see Lemma 4.34).
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L. Paulevé, M. Magnin and O. Roux 668

Definition 4.31 (interleave : OS × OS �→ ℘(OS)).

interleave(ω1, ω2)
∆
= {ω ∈ OS ||ω| = |ω1| + |ω2| ∧ ∃φ1 : �ω

1 �→ �ω, φ2 : �ω
2 �→ �ω,

(∀n, m ∈ �ω
1

, n < m ⇔ φ1(n) < φ1(m))

∧(∀n, m ∈ �ω
2

, n < m ⇔ φ2(n) < φ2(m))

∧(�n1 ∈ �ω
1

, n2 ∈ �ω
2

, φ1(n1) = φ2(n2))}.

Definition 4.32 (ρ̃ : OS × ℘(BS) �→ ℘(OS)).

ρ̃(ω,BS)
∆
= {
 ⊕ ωn..|ω| |n ∈ �ω, ω′ ⊕ ωn ∈ ρ(ωn,BS(ωn)),


 ∈ interleave(ω1..n−1, ω
′)}.

Example 4.33 (Process Hitting in Figure 1). Given the objective sequence b0 �∗b2 ::d0 �∗d2,

from Definition 4.23, we obtain

ρ(b0 �∗b2,BS(b0 �∗b2)) = {	�∗d1 ::b0 �∗b2}
ρ(d0 �∗d2,BS(d0 �∗d2)) = {	�∗b0 ::b0 �∗b1 ::d0 �∗d2, 	�∗b2 ::d0 �∗d2}.

Hence,

ρ̃(b0 �∗b2 ::d0 �∗d2,BS) = {b0 �∗b2 ::b2 �∗b0 ::b0 �∗b1 ::d0 �∗d2,

	�∗b0 ::b0 �∗b2 ::b2 �∗b1 ::d0 �∗d2,

	�∗b0 ::b0 �∗b1 ::b1 �∗b2 ::d0 �∗d2,

b0 �∗b2 ::b2 �∗b2 ::d0 �∗d2}.

Lemma 4.34. γς(ω) = γς(ρ̃(ω,BS)).

Proof.

(⊇) We have

∀ω′ ∈ ρ̃(ω,BS), ω′ �OS ω.

(⊆) By Lemma 4.25 and Definition 4.31,

δ ∈ γς(ω) ⇒ ∃ω′ ∈ ρ̃(ω,BS), δ ∈ γς(ω
′).

5. Over- and under-approximations of process reachability

We define the Process Reachability problem as deciding if a given objective sequence

ω ∈ OS is concretisable for a given Process Hitting in a context ς: that is, if the set γς(ω)

is non-empty.

Using the refinement operators defined in the previous section, we establish several

necessary or sufficient conditions for the concretisability of an objective sequence in a

given context ς. These objective sequences can be given either by a user (to check some

temporal properties) or extracted from BS (with β – see Definition 4.22) to refine this

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 13 Jul 2012 IP address: 129.132.29.35

Static analysis of BRNs dynamics using abstract interpretation 669

set of bounce sequences. Indeed, if a bounce sequence is not concretisable in ς, it can be

ignored in all analyses in the scope of this context.

The aim of these approximations is that they can be computed very rapidly, enabling

us to overcome the state-space explosion problem inherent in the analysis of dynamics

like these. While inconclusive in some cases, the application section (see Section 6) shows

that our analyses are well-suited to biological regulatory networks dynamics and have a

very promising scalability.

The rest of this section is structured as follows. Section 5.1 presents a first over-

approximation based on an unordered analysis of objectives required to concretise the

given objective sequence. Section 5.2 then refines this approximation by exploiting the

sequentiality of objectives to concretise. Section 5.3 uses order constraints between process

occurrences to complete these over-approximations. Finally, Section 5.4 sets up an under-

approximation of the process reachability decision.

5.1. Unordered over-approximation

Given a context ς and an objective sequence ω, we find that ω is concretisable only

if each objective ωn, n ∈ �ω , is independently concretisable in the same context (see

Proposition 5.1). In this way, we can approximate the concretisability of an objective

sequence by recursively applying Proposition 5.1 to extract objectives from the given

objective sequence, and use the refinement operator ρ∧ to extend the objective into several

objective sequences.

Proposition 5.1. γς(ω) �= � =⇒ ∀n ∈ �ω, γς(ωn) �= �.

Proof. Definition 4.16 and Property 4.18 give ω �OS ωi.

Given an objective P , minContς(P ) (see Definition 5.2) is the set of re-targeted objectives

Q, with target(P ) �= target(Q) and bounce(P ) = bounce(Q), which are always derived from

a recursive application of ρ∧(P ,BS∧(P )) using Proposition 5.1 (see Lemma 5.3).

Definition 5.2 (minContς : Obj �→ ℘(Obj)).

minContς(	�∗aj)
∆
= {ak �∗aj | ak �= aj ∧ ∀ai ∈ ς[a], ak ∈ minContObjς (a, ai �

∗aj)}
minContObjς : Σ × Obj �→ ℘(Proc)

minContObjς (a, P )
∆
=

⎧⎪⎪⎨⎪⎪⎩
� if BS∧(P ) = �

{p ∈ Proc | ∀ps ∈ BS∧(P ),

∃q ∈ ps, p ∈ minContProc
ς (a, q)} otherwise.

minContProc
ς : Σ × Proc �→ ℘(Proc)

minContProc
ς (a, bi)

∆
=

⎧⎪⎪⎨⎪⎪⎩
{bi} if a = b

{p ∈ Proc | ∀bj ∈ ς[b],

p ∈ minContObjς (a, bj �∗bi)} otherwise.

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 13 Jul 2012 IP address: 129.132.29.35
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Lemma 5.3. ak �∗aj ∈ minContς(	�∗aj) =⇒ γς(	�∗aj) = γς(	�∗ak ::ak �∗aj).

Proof. We use induction on minContς, ak occurs in all recursive refinements of 	�∗aj
by ρ∧.

Example 5.4 (Process Hitting in Figure 1). Given ς = 〈a1, b1, b2, d0〉, we have minContς
(b1 �∗b2) = {b0 �∗b2}:

BS∧(b1 �∗b2) = {{a1, d1}}
minContObjς (b, b1 �∗b2) = minContProc

ς (b, a1) ∪ minContProc
ς (b, d1)

minContProc
ς (b, a1) = minContObjς (b, a1 �∗a1) = �

minContProc
ς (b, d1) = minContObjς (b, d0 �∗d1)

BS∧(d0 �∗d1) = {{b0}}
minContObjς (b, d0 �∗d1) = minContProc

ς (b, b0) = {b0}.

Thus,

minContObjς (b, b1 �∗b2) = {b0}.

Proposition 5.5 summarises the necessary conditions for the concretisability of an

objective P in context ς: for at least one set of processes ps ∈ BS∧
ς (P ), ∀p ∈ ps, the

objective 	�∗p is concretisable in ς; and ∀Q ∈ minContς(P ), Q is concretisable in ς.

Proposition 5.5. γς(P ) �= � =⇒ ∃ps ∈ BS∧
ς (P ), ∀p ∈ ps, γς(	�∗p) �= � and ∀Q ∈

minContς(P ), γς(Q) �= �.

Proof. The result follows from Lemma 4.30, Lemma 5.3 and Proposition 5.1.

This leads us to the definition of the monotonic function badObjsς (see Definition 5.6),

which removes from a set of objectives Ps those not satisfying the necessary condition

given by Proposition 5.5 in the scope of Ps. Hence, the greatest fixpoint of badObjsς
contains all the objectives not satisfying the necessary condition for their concretisability.

Theorem 5.7 follows from this fact.

Definition 5.6 (badObjsς : ℘(Obj) �→ ℘(Obj)).

badObjsς(Ps) = {P ∈ Ps |BS∧
ς (P ) �= � ∧

((∀ps ∈ BS∧
ς (P ), ∃p ∈ ps, 	�∗p ∈ Ps)

∨ (∃Q ∈ minContς(P ), Q ∈ Ps))}.

Theorem 5.7 (unordered over-approximation).

γς(ω) �= � =⇒ ∀n ∈ �ω, ωn /∈ gfp badObjsς.

Proof. Proposition 5.5 and Definition 5.6 give γς(ωn) = � if ωn ∈ gfp badObjsς.
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5.1.1. Implementation. Given a context ς and an objective sequence ω, we define an

abstract structure Aω
ς (see Definition 5.8) that mimics the relations between objectives

during the execution of Proposition 5.5 (see Lemma 5.9). Aω
ς gathers together three rela-

tions (Reqω
ς , Solως ,Contως ), which are the requirements, solutions and minimal continuity

(or re-targeting), respectively.

Definition 5.8 (Aω
ς ). Given a context ς and an objective sequence ω, we define the abstract

structure

Aω
ς = (Reqω

ς , Solως ,Contως ),

where Reqω
ς , Solως and Contως are defined as follows:

Reqω
ς

∆
={(ai, aj �∗ai) ∈ Proc × Obj | aj ∈ ς[a] ∧ (∃(P , ps) ∈ Solως , ai ∈ ps

∨ ∃n ∈ �ω, bounce(ω) = ai)}

Solως
∆
={(P , ps) ∈ Obj × ℘(Proc) | ∃(ai, P ) ∈ Reqω

ς ∧ ps ∈ BS∧(P )}

Contως
∆
={(P ,Q) ∈ Obj × Obj | ∃(P , ps) ∈ Solως ∧ Q ∈ minContς(p)}.

Lemma 5.9. Given an objective P referenced in Aω
ς , we have

ω′ ⊕ P ∈ ρ∧(P ,BS∧(P ) ⇐⇒ (P , {bounce(ω′
n) | n ∈ �ω

′ }) ∈ Solως

∧ ∀n ∈ �ω
′
, aj = bounce(ω′

n)

∧ ∀ai ∈ ς[a], (aj , ai �
∗aj) ∈ Reqω

ς

and

Q ∈ minContς(P ) ⇐⇒ (P ,Q) ∈ Contως .

Proof. The result follows from the construction of Aω
ς .

Aω
ς has a graph structure, with cycles, potentially. Note that, as |Obj| =

∑
a∈Σ |La|2, the

size of Reqω
ς and Contως sets are polynomial in the number of processes in the Process

Hitting. The size of Solως also depends on the cardinality of BS∧, which follows the

maximum number of combinations of |La| different processes, which is much less than

exponential growth.

Finally, Algorithm 5.10 describes the computation of the Theorem 5.7 decision.

Algorithm 5.10 (unordered over-approximation). Given a context ς, an objective sequence

ω ∈ OS and the abstract structure Aω
ς :

(1) Initialise Θ = {P ∈ Obj | (P ,�) ∈ Solως }.
(2) Repeat the following until Θ becomes a fixpoint:

(a) Υ = {p ∈ Proc | ∃P ∈ Θ, (p, P ) ∈ Reqω
ς }.

(b) Θ = {P ∈ Obj | ∃(P , ps) ∈ Solως , ps ⊆ Υ ∧ ∀(P ,Q) ∈ Contως , Q ∈ Θ}.
(3) γς(ω) �= � =⇒ ∀n ∈ �ω, ∃P ∈ Θ, target(P ) ∈ ς ∧ bounce(P ) = bounce(ωn).
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d0 �∗ d2

b1 b0

b1 �∗ b1

b2 �∗b1⊥
b1 �∗ b0

a1

a1 �∗a1

b2 �∗b0⊥

b2

b1 �∗b2

d1

d0 �∗d1

b2 �∗b2

b0 �∗ b2

d2

Legend

Requirement

aj ai �∗ aj

Solution

({bi, cj} ∈ BS∧(ai �∗ aj))

ai �∗ aj

bi

cj

Continuity

ai �∗ aj ak �∗ aj

Trivial solution

ai �∗ aj

No solution

ai �∗ aj

⊥

Figure 4. Graphical representation of the abstract structure Aω
ς extracted from the Process Hitting

in Figure 1, with ω = d0 �∗d2 and ς = 〈a1, b1, b2, d0〉.

5.1.2. Complexity. The computation of Aω
ς is done by iteratively adding the required

processes and objectives. The steps of Algorithm 5.10 are carried out polynomially in

the size of Aω
ς . Putting aside the BS∧ computation complexity, the proposed over-

approximation can then be achieved by a number of operations polynomial in the size of

the abstract structure.

5.1.3. Examples. Figures 4 and 5 graphically represent the abstract structures extracted

from the Process Hitting example in Figure 1 for different objective sequences and contexts.

Such structures are built recursively: starting from a process node (squares), it is related

to each group of objectives having their target in the given context and their bounce

equal to this process; then each objective node is related to one solution node (circles)

per abstract bounce sequences; finally, solutions nodes are related to the process nodes

composing them. For instance, in Figure 4 with the objective sequence ω = d0 �∗d2 and

the context ς = 〈a1, b1, b2, d0〉, the structure is built from the process node d2 (the bounce

of the objective in ω), which is related to the objective node d0 �∗d2, which is related to

two solutions (|BS∧(d0 �∗d2)| = 2): one of which is related to the process nodes b0 and b1

({b0, b1} ∈ BS∧(d0 �∗d2)) and the other to the process node b2 ({b2} ∈ BS∧(d0 �∗d2)).
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d1 �∗ d2

d2

b2 b0 �∗ b2 d1 d1 �∗ d1

b1 b0 �∗ b1 c1 c0 �∗ c1 a0 a1 �∗ a0⊥

Figure 5. Abstract structure Aω
ς for the Process Hitting example in Figure 1 with ω = d1 �∗d2 and

ς = 〈a1, b0, c0, d1〉. By Theorem 5.7, the objective d1 �∗d2 is not concretisable.

In the case addressed in Figure 4, Theorem 5.7 is satisfied. Figure 5 applies Theorem 5.7

to the Process Hitting example in Figure 1 for the decision of the objective d1 �∗ d2

concretisability. In this case, the necessary condition is not satisfied.

5.2. Ordered over-approximation

This section exploits the ordering of objectives in an objective sequence to increase the

conclusiveness of the over-approximation for its concretisability.

Given a non-trivial objective P in the given context ς, we use ends(P ) to denote the set of

processes a scenario concretising P may lead to (see Definition 5.11 and Proposition 5.12).

This set is computed from BS(P ) by taking the hitter and bounce of the last action in

each bounce sequence.

Definition 5.11 (endsς : Obj �→ ℘(℘(Proc))).

endsς(	�∗ai)
∆
= {end(h) |∃aj ∈ ς[a], ∃ζ ∈ BS(aj �∗ai), ζ �= ε ∧ h = ζ|ζ|}.

Proposition 5.12. γς(	�∗ai) �= � ∧ ai /∈ ς[a] =⇒ ∃δ ∈ γς(	�∗ai), ∃eps ∈ endsς(	�∗ai) such

that eps ⊆ end(δ).

Proof. Since ai /∈ ς[a], there exists n ∈ �δ such that bounce(δn) = ai. Hence, we have

δ1..n ∈ γς(	�∗ai) and end(δn) ⊆ end(δ1..n). So by Definition 5.11, we then get end(δn) ∈
endsς(	�∗ai).

Given an abstract structure Aω
ς ∈ �, we define procs(Aω

ς ) as the set of processes

referenced in Aω
ς (see Definition 5.13) and maxprocsς(ω) (see Definition 5.14) as the set

of processes present in the abstract structure having its context saturated (that is, such

that ς � procs(Aω
ς ) = ς). Note that there is a particular optimisation when ω = P , where

the process bounce(P ) can be ignored by the context.

Definition 5.13 (procs : � �→ ℘(Proc)).

procs((Solως ,Reqω
ς ,Contως ))

∆
= {p ∈ Proc |∃(P , ps) ∈ Solως , p ∈ ps

∨ p = target(P )

∨ (P �= ω ⇒ p = bounce(P ))}.
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Definition 5.14 (maxprocsς : OS �→ ℘(Proc)).

maxprocsς(ω)
∆
= procs(�Aω

ς �) where �Aω
ς � ∆

= lfp{Aω
ς }

(
Aω

ς �→ Aω
ς�procs(Aω

ς )

)
.

By intersecting maxprocsς(ω) and endsς(ω1), we obtain a context in which ω2..|ω|
concretisability should satisfy Theorem 5.7 if ω is concretisable in ς. This is stated by

Theorem 5.15, which gives a straightforward refinement of Theorem 5.7 by taking the

sequentiality of objectives in ω into account.

Theorem 5.15 (ordered over-approximation). Given a context ς and ω = P :: ω′ ∈ OS

such that bounce(P ) /∈ ς, we have

γς(P ::ω′) �= � =⇒ ∃eps ∈ endsς(P ), ∀n ∈ �ω
′
, ω′

n /∈ gfp badObjsmaxς,

with maxς = ς � maxprocsς(ω) � eps.

Proof. We have δ ∈ γς(P ::ω′) ⇒ ∃n ∈ �δ such that

bounce(δn) = bounce(P )

eps ⊆ end(δ1..n)

δn+1..|δ| ∈ γς′ (ω′)

with ς′ = ς � support(δ).

Also ∀n ∈ �ω
′
, if Σ(ω′

n) ∈ Σ(eps), since γς′ (ω′
n) �= � and by induction, we have

ω′
n /∈ gfp badObjsmaxς.

If Σ(ω′
n) /∈ Σ(eps), we have bounce(ω′

n) ∈ maxς, hence

ω′
n /∈ gfp badObjsmaxς

(trivial objective).

By defining maxCtx(ς, ω, n) as the maximum context after the resolution of ω1..n (see

Definition 5.16), the above theorem can be extended straightforwardly to Corollary 5.17.

Definition 5.16 (maxCtx : Ctx × OS × � �→ Ctx). (we assume n ∈ {0} ∪ �n):

maxCtx(ς, ω, n)
∆
=

⎧⎪⎪⎨⎪⎪⎩
ς if n = 0

ς � maxprocsς(ω) if bounce(ωn) ∈ maxCtx(ς, ω, n − 1)

ς � maxprocsς(ω) � eps otherwise, where eps ∈ endsς(ωn).

Corollary 5.17. We have

γς(ω) �= � =⇒ ∀n ∈ �ω, γmaxς(ωn) �= �,

with

maxς = maxCtx(ς, ω, n − 1).
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a

0

1

b

0

1 a0

a0 �∗a0

a1 �∗a0

b0

b1 �∗b0

b0 �∗b0

b1

b1 �∗b1

b0 �∗b1

a1

a0 �∗a1

a1 �∗a1

Figure 6. The diagram on the right-hand side is the saturated abstract structure �Aω
ς � of the

Process Hitting on the left-hand side with ς = 〈a1, b0〉 and ω = a1 �∗ a0 ::b0 �∗ b1. Theorem 5.15

concludes that this objective sequence is not concretisable.

5.2.1. Implementation. The computation of maxprocsς(ω) requires at most |Proc| itera-

tions, giving a number of steps polynomial in the number of processes. The computation

of endsς(	�∗ai) can either be derived from prior BS(	�∗ai) computations or, if the BS are

too costly to compute, it can be approximated by either {{bounce(P )}}, or by

{end(h) | h ∈ H ∧ bounce(h) = ai ∧ ∃aj ∈ ς[a], ∃ps ∈ BS∧(aj �∗ai), target(h) ∈ ps}.

5.2.2. Example. Given the Process Hitting defined in Figure 6, with ς = 〈a1, b0〉, The-

orem 5.7 is inconclusive on the concretisability of ω = a1 �∗a0 :: b0 �∗b1. By applying

Theorem 5.15, it appears that b0 �∗b1 is not concretisable in maxς = maxCtx(ς, ω, 1) =

〈a0, b0〉 (in such a case, the Ab0�∗b1
maxς forms a unique cycle between b1 and a1).

5.3. Over-approximation using process occurrence order constraints

The fact that an objective ai �∗ aj has no solution (BS∧(ai �∗aj) = �) tells us that the

process aj never occurs after ai. This order constraint between process occurrences is

denoted by aj � ai (see Definition 5.18 and Property 5.19).

Definition 5.18 (�). The binary relation �⊂ Proc × Proc is a partial pre-order such that

aj � ai (that is, (aj , ai) ∈�) if and only if there exists no scenario where aj occurs after ai:

aj � ai
∆
= �δ ∈ Sce such that ∃n, m ∈ �δ , n � m, target(δn) = ai ∧ bounce(δm) = aj .

Property 5.19 (order constraint uncovering). BS(ai �∗ aj) = � =⇒ aj � ai.

Now that we know some order constraints on process occurrences, we want to check if

some sequence of objectives does not contradict such constraints. This can be achieved by

computing the processes that always occur when resolving an objective: given an objective

sequence ω, if a process ai is required by ωn and a process aj by ωm, n < m, then the

constraint aj � ai should not exist. This is illustrated by Figure 7.

In a similar way to minContς (see Definition 5.2), minProcς(P ) refers to the set of

processes of any sort that occur in all refinements of P in the context ς (see Definition 5.20
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. . . ωn
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. . . ωm
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. . .

�?

ω|ω|

Figure 7. Illustration of the method developed in Section 5.3 to over-approximate the

concretisability of an objective sequence ω in the context ς: for each objective, the minimal set of

processes occurring (represented by squares) are computed using minProc (see Definition 5.22); the

sequence is not concretisable when two processes (in black) occurring in distinct objectives

resolution contradict the process occurrences order �.

and Lemma 5.21). Using the previously defined maxCtx (see Definition 5.16), we define

minProc(ς, ω, n) (see Definition 5.22), which is the set of processes occurring in the

resolution of ωn after having resolved ω1..n−1. From this definition, Theorem 5.23 states

the over-approximation illustrated in Figure 7.

Definition 5.20 (minProcς : Obj �→ ℘(Proc)). Given a context ς,

minProcς(	�∗ai)
∆
= {p ∈ Proc | ∀aj ∈ ς[a],

BS(aj �∗ai) �= � ⇒ p ∈ minProcObjς (aj �∗ai)}
minProcObjς : Obj �→ ℘(Proc)

minProcObjς (aj �∗ai)
∆
= {ai} ∪ {p ∈ Proc

| ∀ps ∈ BS∧(aj �∗ai), ∃q ∈ ps, p ∈ minProcς(	�∗q)

∨ ∃ak �∗ai ∈ minContObjς (a, aj �∗ai),

p ∈ minProcObjς (aj �∗ak) ∪ minProcObjς (ak �∗ai)))}.

Lemma 5.21. ∀δ ∈ γς(P ), ∀p ∈ minProcς(P ), p ∈ δ.

Proof. We show by induction on minProcς, that p occurs in all recursive refinements of

P by ρ∧.

Definition 5.22 (minProc : Ctx × OS × � �→ ℘(Proc)). Assuming n ∈ {0} ∪ �ω , we define

minProc(ς, ω, n)
∆
=

⎧⎪⎪⎨⎪⎪⎩
{ai ∈ ς} if n = 0

minProcmaxς(ωn) otherwise

with maxς = maxCtx(ς, w, n − 1).

Theorem 5.23 (ordered over-approximation refined by �). We have

γς(ω) �= � =⇒
�n, m ∈ {0} ∪ �ω, n < m, ∃p ∈ minProc(ς, ω, n), ∃q ∈ minProc(ς, ω, m), q � p.

Proof. The result follows from Lemma 5.21, Corollary 5.17 and Definition 5.22.
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z

0

1

2

a

0

1

b

0

1

z1 �∗z2 b0

b0 �∗b0

b1 �∗b0 z0 z0 �∗z0

z1 �∗z0 a1 a1 �∗a1

a0 �∗a1⊥

z0 �∗z2 a0 a1 �∗a0

a0 �∗a0

z2 �∗z1 b1 b1 �∗b1

b0 �∗b1

Figure 8. The bottom diagram shows the saturated abstract structure �Aω
ς � of the Process Hitting

in the top diagram with ς = 〈a1, b1, z1〉 and ω = z1 �∗ z2 ::z2 �∗ z1 ::z1 �∗ z2. Theorem 5.23 tells us

that this objective sequence is not concretisable.

5.3.1. Implementation. The implementation is very similar to that presented in Section 5.2.

The uncovering of � is done linearly in the size of the saturated abstract structure

�Aω
ς �.

5.3.2. Example. Let us define the Process Hitting as in Figure 8, and its saturated abstract

structure �Aω
ς �, with ς = 〈a1, b1, z1〉 and ω = z1 �∗ z2 :: z2 �∗ z1 :: z1 �∗ z2, for which the

concretisability has to be decided. The evaluation of minCont(ς, ω, n) and maxCtx(ς, ω, n)

give the following:
n = 0 − ς n = 1 − z1 �∗ z2 n = 2 − z2 �∗ z1 n = 3 − z1 �∗ z2

minProc(ς, ω, n) a1, b1, z1 a0, a1, b0, z0, z2 b1, z1 a0, a1, b0, z0, z2

maxCtx(ς, ω, n) a1, b1, z1 a0, a1, b0, z2 a0, a1, b1, z1 -

As a1 � a0, we have ω is not concretisable in ς.
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5.4. Under-approximation

The under-approximation procedure presented in this section takes advantage of a variant

of the abstract structure used in the above over-approximations. If certain conditions on

this abstract structure hold, we can show that a scenario concretising the given objective

sequence exists. The proposed construction of the scenario is made by a so-called top-

down resolution: given an objective sequence ω, we first build the scenario concretising

ω1 by preempting the resolution of the objective sequence ω2..|ω| (and hence, ignoring any

objective interleaving that may be required to concretise ω). As stated by the refinement

operators in Section 4.4, the concretisation of ω1 involves the concretisation of a refinement

of ω1, resulting in a recursive procedure of scenario construction.

We first give an alternative definition of the set of scenarios concretising an objective

sequence ω in a context ς by saying �ς(ω) is empty unless, for each state s ∈ L included

in ς, there exists a scenario δ ∈ γς(ω) such that δ is playable in s, in which case,

�ς(ω) = γς(ω) (see Definition 5.24). Property 5.25 is directly derived from this definition

and the extension of �ς to a set of objective sequences is given in Definition 5.26.

Definition 5.24 (�ς : OS �→ ℘(Sce)).

�ς(ω)
∆
=

{
γς(ω) if ∀s ∈ L, s ⊆ ς, ∃δ ∈ γς(ω), support(δ) ⊆ s

� otherwise.

Property 5.25. ς′ ⊆ ς ∧ �ς(ω) �= � =⇒ �ς′ (ω) �= �.

Definition 5.26 (�ς : ℘(OS) �→ ℘(Sce)). �ς(Ω)
∆
= {δ ∈ �ς(ω) | ω ∈ Ω}.

Given an objective P , maxContς(Σ(P ), P ) (see Definition 5.27) is the set of processes

of sort Σ(P ) that may be encountered during the resolution of P . We then define

the saturated abstract structure �Bω
ς � = (�Reqω

ς �, �Solως �, �Contως �) (see Definition 5.28)

similarly to �Aω
ς � (see Definition 5.8), except that �Solως � can arbitrarily select bounce

sequences to resolve an objective, and that �Contως � reflects maxContς instead of minContς.

It appears that if �Bω
ς � contains no cycle, and if all referenced objectives have at least

one solution, then a top-down resolution of any referenced objective succeeds in every

state of ς. This is stated by Theorem 5.29, which provides sufficient conditions for the

concretisation of an objective sequence in a given context.

Definition 5.27 (maxContς : Σ × Obj �→ ℘(Proc)).

maxContς(a, P )
∆
= {p ∈ Proc |∃ps ∈ BS∧(P ), ∃bi ∈ ps, b = a ∧ p = bi

∨ b �= a ∧ p ∈ maxContς(a, bj �∗bi) ∧ bj ∈ ς[b])}.

Definition 5.28 (�Bω
ς �). The abstract structure

�Bω
ς � = (�Reqω

ς �, �Solως �, �Contως �)

is defined as

�Bω
ς � ∆

= lfp{Bω
ς }

(
Bω

ς �→ Bω
ς�procs(Bω

ς )

)
,
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with

Bω
ς = (Reqω

ς , Solως ,Contως )

and

Reqω
ς

∆
={(ai, aj �∗ai) ∈ Proc × Obj | aj ∈ ς[a] ∧ (∃(P , ps) ∈ Solως , ai ∈ ps

∨ ∃n ∈ �ω, bounce(ω) = ai}

Solως
∆
⊆{(P , ps) ∈ Obj × ℘(Proc) | ∃(ai, P ) ∈ Reqω

ς ∧ ps ∈ BS∧(P )}

Contως
∆
={(P , q�∗bounce(P )) ∈ Obj × Obj | ∃(P , ps) ∈ Solως

∧ q ∈ maxContς(Σ(P ), P )}.

Theorem 5.29 (under-approximation). If the graph �Bω
ς � has no cycles and all referenced

objectives have at least one solution, then �ς(ω) �= �.

Proof. We use maxς = ς � procs(�Bω
ς �) to denote the context handled by �Bω

ς �. By

induction on the acyclic graph �Bω
ς �, we prove that ∀s ∈ L, s ⊆ maxς, for each objective

P referenced in �Bω
ς � such that target(P ) ∈ s, ∃δ ∈ �s(P ) and end(δ) ⊆ maxς.

— (P ,�) ∈ �Solως � ⇒ either target(P ) = bounce(P ) (thus δ = ε), or ∀ζ ∈ BS(P ), ζ ∈
Sce ∧ Σ(ζ) = {Σ(P )}, thus δ = ζ.

— We assume that all objectives that are children of P are concretisable (no cycles). If

∃Q ∈ �Contως �, then, by hypothesis, �s(target(P )�∗target(Q) ::Q) �= �, thus �s(P ) �= �.

Otherwise, by Definition 5.27, the concretisations of children of P do not require any

process of sort Σ(P ). Also, there exists ζ ∈ BS(P ) such that (P , ζ∧) ∈ �Solως �. By

hypothesis,

∀n ∈ �ζ , ∃δn ∈ �sn−1 (	�∗hitter(ζn))

with either sn−1 = s if n = 1 or

sn−1 = s · δ1 · . . . · δn−1.

Moreover, Σ(P ) /∈ Σ(δn) (by Definition 5.27). Therefore,

δ = δ1 ::ζ1 :: . . . ::δn ::ζn ∈ �s(P )

and end(δ) ⊆ maxς.

Finally, as �maxς(ω) �= �, we have �ς(ω) �= � (see Property 5.25).

From the proof of the above theorem, we define endProc(�Bω
ς �, P ) (see Definition 5.30)

as the maximum set of processes a scenario built by Theorem 5.29 may end with (see

Corollary 5.31). This allows a straightforward extension of Theorem 5.29 to take the

sequentiality of objectives into account (see Corollary 5.32).
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Definition 5.30 (endProc : � × Obj �→ ℘(Proc)).

endProc(�Bω
ς �, P )

∆
={p ∈ Proc | Σ(p) = Σ(P ) ∧ p = bounce(P )

∧ Σ(p) �= Σ(P )

∧ (∃(P ,Q) ∈ �Contως �, p ∈ endProc(�Bω
ς �,

target(P )�∗target(Q))

∨ p ∈ endProc(�Bω
ς �, Q)

∨ ∃(P , ps) ∈ �Solως �, ∃bi ∈ ps, ∃bj ∈ ς[b],

p ∈ endProc(�Bω
ς �, bj �∗bi))}.

Corollary 5.31. Given P ∈ Obj, if Theorem 5.29 is satisfied with �ς(P ) �= �, then

∀s ∈ L, s ⊂ ς, ∃δ ∈ �ς(P ) such that end(δ) ⊆ endProc(BP
ς , P ).

Corollary 5.32. Given P ∈ Obj, and ω ∈ OS, if Theorem 5.29 is satisfied with �ς(P ) �= �,

and if Theorem 5.29 is satisfied with �ς′ (ω) �= �, where ς′ = ς � endProc(BP
ς , P ), then

Theorem 5.29 is satisfied with �ς(P ⊕ ω) �= �.

5.4.1. Implementation. The computation of the saturated abstract structure �Bω
ς � works

by progressive addition of relations between objectives and processes, which are found

by several traversals of the abstract structure. This gives a maximal complexity that is

polynomial in the size of the abstract structure. Checking the conditions for Theorem 5.29

is linear in the size of the obtained abstract structure. It is worth noting that arbitrarily

selecting solutions for objectives in �Bω
ς � prevents spurious saturations and may increase

the satisfaction of the above theorem, but potentially increases the complexity of checking

(as several combinations of solutions can be tested).

5.4.2. Examples. Figure 9 shows two examples of the application of Theorem 5.29 on

the Process Hitting example of Figure 1.

5.4.3. Discussion. Corollary 5.32 suggests that testing a refined objective sequence may be

more conclusive than testing the original objective sequence. Future work may use a graph

analysis of �Bω
ς � to determine which refined objective sequences are good candidates for

satisfying Theorem 5.29, thereby increasing the conclusiveness of the method.

6. Application to Biological Regulatory Networks

In order to give a practical direct application of the contributions of this paper, we

briefly describe the results obtained on the formal analysis of large Biological Regulatory

Networks (BRNs). The details of how we have used Process Hitting to model BRNs are

given in Paulevé et al. (2011b) and we will only give an informal overview of it here – see

Section 6.1.

The analysis (see Section 6.2) is performed on a real biological model extracted from

the literature, and shows an impressive enhancement in terms of the tractability of the

approach compared with other standard model-checking techniques.
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d0 �∗ d2

d2

b0 b1 �∗ b0 a1 a1 �∗ a1

b0 �∗ b0

b1 b1 �∗ b1

b0 �∗ b1 c1 c1 �∗ c1

d0 �∗ d2

d2

b0 b1 �∗ b0 a1 a0 �∗ a1

b1 b1 �∗ b1

b0 �∗ b1 c1 c0 �∗ c1 a0 a0 �∗ a0

b0 �∗b0 a1 �∗a1

c1 �∗c1 a1 �∗ a0⊥

Figure 9. The top diagram shows the saturated abstract structure �Bω
ς � from the Process Hitting in

Figure 1 with ω = d0 �∗d2 and ς = 〈a1, b1, c1, d0〉, and the bottom diagram shows it with

ς = 〈a0, b1, c0, d0〉. By Theorem 5.29, ω is concretisable in 〈a1, b1, c1, d0〉. At this stage, our

procedure is inconclusive for the concretisability of ω in 〈a0, b1, c0, d0〉.

6.1. From Biological Regulatory Networks to Process Hittings

We first sketch the modelling of a discrete BRN in the Process Hitting framework.

Basically, for each component there is a corresponding sort, and for each state of the

components there is a corresponding process. If a component a at state i activates

a component b at state j, an action ai → bj � bk is added, where bk is the state

of b after activation. The inhibition is modelled similarly. The realisation of boolean

functions between nodes is modelled using a dedicated sort, and is illustrated in

Figure 10. The full formalisation of this translation can be found in Paulevé et al.

(2011b).

6.2. T-cell receptor signalling pathway (94 components)

The biological system presented in Saez-Rodriguez et al. (2007) models the T-cell receptor

(TCR) signalling pathway, the behaviours of which reveal an activation of transcription

factors controlling the cell’s fate: for example, deciding whether it proliferates or not. This

model is an extension of an earlier BRN model relating 40 components (Klamt et al.

2006).

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 13 Jul 2012 IP address: 129.132.29.35
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0

1
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a

b
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c = ¬a ∧ b

a

0 1

b

0 1

c

0

1

ab

0 1 2 3

Figure 10. The diagrams on the right-hand side show examples of Process Hittings from BRNs

with the interaction graphs shown on the left-hand side. The upper diagrams show simple

inhibition of c by a, and the lower diagrams show a boolean function between a (inhibitor) and b

(activator) on c, where ab reflects the state of the sorts a and b. In this case, ab3 reflects the state

〈a0, b1〉 (and, ab0 the state 〈a1, b0〉, ab1 the state 〈a1, b1〉, and ab2 the state 〈a0, b0〉).

The Process Hitting model† of this system is composed of 1124 actions between 448

processes splitted in 133 sorts (the largest sort has 16 processes). The total number of

states of this model is 2194 (≈ 2 · 1058).

We have carried out experiments on independent reachability decisions using all possible

input combinations (components CD45, CD8, TCRlig) with each output (components

SRE, AP1, CRE, NFkB, NFAT, Cyc1, p21c p27k, FKHR, BclXL). All result in conclusive

decisions. Note that we have only exploited the approximations defined by Theorem 5.7

(see Section 5.1) and Theorem 5.29 (see Section 5.4), resulting in quite simple dynamics

for the independant reachability of components.

Computation times are around a hundredth of a second on a 3GHz processor with 2GB

of RAM. To give a comparison, we did the same experiments with a standard symbolic

model-checking method using state-space compression based on Hierarchical Set Decision

Diagrams (SDDs) (Hamez et al. 2009), using the libDDD framework‡, which is known

† The model and implementation are available at http://process.hitting.free.fr.
‡ See http://ddd.lip6.fr for background and details of libDDD.
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for its good performance. For the majority of reachability decisions, the program runs out

of memory; for the others, computation times range from several seconds to hours. This

shows the remarkable efficiency of our method, based on abstract interpretation.

7. Discussion

Process Hitting is a recently proposed framework suitable for modelling the dynamics of

BRNs with discrete values. In Process Hitting, components are represented as sorts, and

their levels as processes: at any time, one and only one process of each sort is present.

The successive states of a component within the system are enclosed in the so-called sort.

The replacement of one process by another of the same sort (that is, a level change of a

component), is conditional on the presence of at most one other process, of any sort.

Thanks to the particular structure of Process Hitting models, a powerful static analysis

by abstract interpretation has been developed to decide the successive reachability

of processes, and hence of component levels in the context of BRN modelling. The

computation is done by over- and under-approximation of the decision, and may turn

out to be inconclusive. It exploits two complementary abstractions of scenarios in Process

Hittings (by objective and bounce sequences). Several refinements of an objective sequence

are then defined to provide the details of the steps required for its concretisability. These

refinements are exploited to derive necessary or sufficient conditions for the process

reachability satisfaction. Further work may improve the conclusiveness of our method,

as discussed in Section 5.4. Also, the link between the conclusiveness of the developed

method and the structure of the interaction graph of the BRN could be studied.

The implementations of the approximations presented use an abstract structure that

is guaranteed to have a size nearly polynomial in the total number of processes. On

the one hand, the computation of the refinements can be exponential in the number of

processes within a single sort; but, on the other hand, the computations of the decisions

are polynomial in the size of the abstract structure. Hence, we expect efficient analyses

when the number of processes within a sort is limited, but a large number of sorts need

to be handled.

This new and original approach was applied to the analysis of a large BRN relating 94

components. Response times are very fast (around a hundredth of a second on a desktop

computer), showing a promising scalability of our method. We have compared the results

with those produced by standard symbolic model checking techniques, which regularly

fail to analyse the model because of the state-space explosion. To our knowledge, ours is

the first successful application of model checking to BRNs of such a size.

7.1. Related work

There has been recent work on the fast computation of the set of reachable components

within Kappa models, which use a rule-based language (Danos et al. 2008). In the general

case, this set is over-approximated, and such an analysis does not enable us to decide the

successive reachability of processes, as we have done in this paper. The work presented

in Alimonti et al. (2010) on so-called T-Paths within Petri Nets establishes structural
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properties within Petri Nets to derive either necessary or sufficient conditions for place

marking reachability. This follows a similar approach to ours. Finally, Pilegaard et al.

(2005) applies static analysis techniques of bioambient models to study the behaviour of

biological systems.

Future work will investigate other applications of the refinements of the abstraction

interpretations of Process Hitting presented here. In particular, since they extract the

causality between process changes, they identify processes required for a certain process

reachability. This kind of analysis may lead to a control of the studied system by acting

upon these key processes: for example, using knockdown techniques on a key gene to

prevent a cascade of gene activation (gene therapy).

Another research direction is the incorporation of quantitative aspects within the

decision of process reachability presented here: for example, to calculate the probability

of reaching a given process within a given time interval.
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Paulevé, L., Magnin, M. and Roux, O. (2011a) Abstract Interpretation of Dynamics of Biological

Regulatory Networks. In: Proceedings of The First International Workshop on Static Analysis

and Systems Biology (SASB 2010). Electronic Notes in Theoretical Computer Science 272 43–56.

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 13 Jul 2012 IP address: 129.132.29.35

Static analysis of BRNs dynamics using abstract interpretation 685
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