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Abstract—The stochastic �-calculus is a formalism that has been used for modeling complex dynamical systems where the

stochasticity and the delay of transitions are important features, such as in the case of biochemical reactions. Commonly, durations of

transitions within stochastic �-calculus models follow an exponential law. The underlying dynamics of such models are expressed in

terms of continuous-time Markov chains, which can then be efficiently simulated and model-checked. However, the exponential law

comes with a huge variance, making it difficult to model systems with accurate temporal constraints. In this paper, a technique for

tuning temporal features within the stochastic �-calculus is presented. This method relies on the introduction of a stochasticity

absorption factor by replacing the exponential distribution with the Erlang distribution, which is a sum of exponential random variables.

This paper presents a construction of the stochasticity absorption factor in the classical stochastic �-calculus with exponential rates.

Tools for manipulating the stochasticity absorption factor and its link with timed intervals for firing transitions are also presented.

Finally, the model-checking of such designed models is tackled by supporting the stochasticity absorption factor in a translation from

the stochastic �-calculus to the probabilistic model checker PRISM.

Index Terms—Temporal parameters, �-calculus, model-checking, Markov processes, stochastic processes.
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1 INTRODUCTION

BY introducing temporal and stochastic aspects within
models, designers aim to reproduce the behavior of real

systems more closely. This complexity of dynamics models
generally requires a compromise between a precise specifica-
tion of temporal parameters and efficient analysis techniques.

The �-calculus [1] is a concurrent process algebra
suitable for modeling independently defined entities com-
municating through mobile channels. This formalism is
widely used for analyzing, for instance, communication
protocols [2]. Among the different extensions of this
calculus, the stochastic �-calculus [3] introduces stochastic
and temporal features within �-calculus models. The
stochastic �-calculus is notably used to model biological
systems [4], [5], [6], [7]. Temporal and stochastic features of
biochemical reactions are prominent for analyzing and
predicting the behaviors of such complex systems.

In the stochastic �-calculus framework, time and
stochasticity are injected by making the duration of
transitions a random variable. Usually, the random variable
follows an exponential distribution. The parameter of this
distribution is called the use rate and, informally, defines the
number of times the transition is used within a time unit.
Underlying semantics of exponentially distributed stochas-
tic �-calculus expressions can be expressed with contin-
uous-time Markov chains (CTMCs). By exploiting the
memoryless property of the exponential law, efficient
simulation algorithms have been designed—such as the

Gillespie algorithm [8] or algorithms implemented in BioSpi
[4] and SPiM [9]. The model-checking of stochastic
�-calculus has been recently proposed in [10], which offers
a translation of the exponentially distributed �-Calculus to
PRISM, a probabilistic symbolic model checker [11].

Despite use rates bringing temporal features to models,
the high variance of the exponential distribution forbids a
precise modeling of temporal constraints. As an example,
one may wonder how to model in stochastic �-calculus a
transition taking place only within a given time interval, as
is usually done with timed automata [12] or time Petri nets
[13]. This kind of temporal specification is commonly used,
easy to manipulate, and necessary to model systems where
temporal features determine the dynamics.

In this paper, we present a technique to tune temporal
features within stochastic �-calculus models and we provide
a method to analyze such models using PRISM. This tuning
permits to model both stochastic and temporal aspects of a
system in a less dependent manner than in the classical
stochastic �-calculus. Such modeling is enabled by attaching
to actions, in addition to the use rate, a so-called stochasticity
absorption factor. The higher the stochasticity absorption
factor, the lower the temporal variance around the mean
imposed by the use rate. The stochasticity absorption of
transitions is obtained by replacing the exponential distribu-
tion by the Erlang distribution, which is the distribution of
the sum of exponential random variables.

This paper presents three main and original contributions:

. Translation of the stochastic �-calculus with Erlang
distributions into the stochastic �-calculus with exponen-
tial distributions. This translation allows us to
simulate and analyze stochastic �-calculus models
with Erlang distributions by using the numerous
classical tools that apply on the Markovian stochastic
�-calculus. The construction is purely syntactic, and
does not rely on explicit construction of CTMCs.
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. Estimators for the parameters of the Erlang distribution
corresponding to a given time interval. In this way,
similarly to timed automata or time Petri nets, a
transition can be parameterized by specifying a
confidence time interval of firing, referred to as the
firing interval. The transition only occurs within the
specified time interval at a given confidence
coefficient.

. Model-checking of the stochastic �-calculus with Erlang
distributions using PRISM, by adapting the prior
translation of the Markovian stochastic �-calculus
into PRISM of Norman et al. [10] to support the
stochasticity absorption factor. This brings the first
straightforward model-checking of the stochastic
�-calculus with Erlang distributions. Moreover, the
proposed construction of the stochasticity absorp-
tion factor in PRISM can be applied to more general
models than those resulting from the translation
from the stochastic �-calculus.

The complexity of the translation of the stochastic
�-calculus with Erlang distributions into the stochastic
�-calculus with exponential distributions is done linearly in
the size of the model. In the same manner, the addition of
the stochasticity absorption factor within PRISM models
resulting from a translation of the stochastic �-calculus is
also done linearly in the size of the model. Whereas the
simulation does not suffer from the addition of stochasticity
absorptions, we observe that the model-checking of such
models suffers from a state space explosion for large
stochasticity absorption factors.

The applicability of the overall method is illustrated by a
case study: the modeling of the biological segmentation of
metazoans [14]. This biological case study relies on quite
precise temporal specifications that are difficult to incorpo-
rate within a pure Markovian stochastic �-calculus. We
propose here a stochastic �-calculus model of this biological
system, and we study the influence of the stochasticity
absorption factor in the reproduction of particular beha-
viors of this model.

This paper is structured as follows: Section 2 formally
presents a variant of the stochastic �-calculus. Section 3
introduces the stochasticity absorption factor through the
Erlang distribution. A construction of the Erlang distributed
from the exponentially distributed stochastic �-calculus is
provided. Section 4 establishes the parallel between the
firing interval of a transition, its rate, and its stochasticity
absorption factor. Section 5 adapts the translation from the
standard stochastic �-calculus into PRISM to support
the stochasticity absorption factor. The applicability of the
overall approach is discussed and illustrated in Section 6.
Finally, Sections 7 and 8 discuss related work and the
contributions of this paper.

2 THE STOCHASTIC �-CALCULUS

The �-calculus is a concurrent process algebra where two
processes communicate using a shared channel [15]. For
establishing a communication, a sender process outputs on a
channel and a receiver process inputs on the same channel.
The sender process may output values on the channel to
transmit data to the receiver, where a value can also be a
channel. In this way, �-calculus allows modeling the mobility
of communication channels between concurrent processes.

The stochastic extension of the �-calculus affects to each
action (channel input/output or internal action) a probabil-
istic distribution for determining the delay until it is effective
[3], [16]. Usually, the exponential distribution is preferred.
The parameter of this distribution is referred to as the use rate

for the action, and informally, gives the number of times such
an action is to be fired within one time unit.

The syntax for the stochastic �-calculus used in this
paper is presented in Definition 1. It is close to the definition
of the stochastic �-calculus used in [17].

Definition 1 (Stochastic �-Calculus). Using C;Ci; P ;Q to

range over terms,A to range over definitions of race conditions,

t to range over internal action identifiers, � to range over

actions, a; y to range over channels, and m; z1; . . . ; zn to range

over values:

Aðz1; . . . ; znÞ ::¼
X
i2I

Ci with fnðCiÞ � fz1; . . . ; zng

C;Ci ::¼ �aC j ½cond� C j �:P
� ::¼ �t j am j �am

P;Q ::¼ P j Q j Aðz1; . . . ; znÞ j
�xP j ½cond� P j 0;

where I is a finite index set and cond is a Boolean expression

on values. fnðCÞ is the set of channels that are free in C.
AðÞ is abbreviated as A and z1; . . . ; zn is abbreviated as ~z;

C1 þ C2 stands for
P

i2f1;2g Ci; am (respectively, �am) is
abbreviated as a (respectively, �a) when m is not used in the
following term.

The actions � of a process are either internal action (�t),
input of m on channel a (am), or output of m on channel a
(�am); m is a value: either a channel y, an extendable list of
values, or a tuple of values ~m. As in [17], when outputting,m
can also be a fresh channel �y, i.e., a bound output. After
performing such an action �, the process can evolve as P ,
written �:P . The term 0 denotes the null process, P jQ the
parallel composition of processes P and Q, ½cond�P the
process P enabled only if cond is satisfied (generally, cond is
a conjunction of tests upon values), and �aP is the restriction
of a fresh channel a to the process P .

P
i2I Ci is a race

condition between processes Ci: Only the first fired Ci is
considered. Each race condition has a definition of the form
Að~zÞ ¼

P
i2I Ci, where ~z are the parameters of the process A.

I is assumed to be finite and may depend on values in ~z. If I
is empty, the sum is equivalent to the null process.

A channel a is bound to a process P if there exists a
preceding restriction �a within the expression of P .
Otherwise, the channel a is free (or unbound). The set of
bound channels in a process P is noted as bnðPÞ and the set
of free channels as fnðPÞ. nðPÞ ¼ fnðPÞ [ bnðPÞ is the set of
channels present in the term P .

The first action performed by a process C involved in a
race condition is denoted by �ðCÞ and is defined as below.
Hereafter, it is assumed that if the first action performed byC
is an input or output on a channel, this channel is free in C.

�ð�t:P Þ ¼ �t �ð�xCÞ ¼ �ðCÞ if �ðCÞ 62 fx; �xg
�ðay:P Þ ¼ a �ð½cond�CÞ ¼ �ðCÞ
�ð�ay:P Þ ¼ �a:
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Fig. 1 depicts the operational semantics of the stochastic
�-calculus, which is close to [17]. Transitions are labeled by
the action to be performed, �t denotes an internal transition
identified by t, _a denotes a communication on channel a,
that is the synchronization of one output with one input on
channel a. Free and bound channels on actions � are
defined in Table 1.

We denote by S�e the stochastic �-calculus having the
duration of each action on a (internal action �a or input/
output on channel a) being an exponential random variable
at use rate ra 2 IRþ� . The probability that an action at use
rate r is fired within a delay t is 1� expð�r:tÞ. Its average
duration is r�1 time units with a variance of r�2. Given
x actions having, respectively, use rates r1; . . . ; rx, the
probability that the yth action is fired is

ry
r1þ���þrx . We also

consider actions having an infinite rate ra ¼ 1, i.e., which
are instantaneous. Such actions are always fired first. If two
instantaneous actions are possible, the choice of the one to
fire is nondeterministic.

3 STOCHASTICITY ABSORPTION

The exponential law brings a strong binding between the
average duration and the temporal variance of the duration
for a transition. For instance, the higher the average
duration (or equivalently, the lower the use rate), the
higher the variance. The stochasticity absorption factor aims at
coping with this strong binding between temporal and
stochastic features.

Instead of having the duration of an action following
one exponential random variable at rate r, we propose to
have the duration of an action following the sum of
sa exponential random variables at rate r:sa. This results in
an unchanged average duration, but a variance divided by
sa. In this way, sa stands for the stochasticity absorption
factor. The obtained probabilistic distribution is known as
the Erlang distribution. Therefore, the tuning of the temporal
features within the stochastic �-calculus is achieved by
attaching to each action an Erlang distribution at a fixed rate
and stochasticity absorption factor. We denote by S�Er the

stochastic �-calculus having the duration of transitions
following an Erlang distribution.

This section starts by presenting the Erlang distribution
and functions to compute some standard probabilities. The
translation of S�Er into S�e is then presented, demonstrat-
ing that S�Er processes can be simulated using standard
algorithms based on the exponential law for firing actions.
Finally, the S�Er calculus is illustrated by a simple example.

3.1 The Erlang Distribution

The Erlang distribution is usually defined by two para-
meters: the shape k 2 IN� and the rate � 2 IR�þ. The Erlang
distribution is then the distribution of the sum of
k independent exponentially distributed random variables
at use rate �. The Erlang distribution is a particular case of
the gamma distribution where the shape parameter may be
any positive real.

For the sake of consistency, we refer to the Erlang
distribution as the distribution of the sum of sa exponential
random variables at use rate r:sa, where sa is the
stochasticity absorption factor and r the use rate of the
nonabsorbed exponential variable (i.e., when sa ¼ 1).
Equivalence between these two definitions is given by the
relations k ¼ sa and � ¼ r:sa.

The probability density function (PDF) and cumulative
distribution function (CDF) of an Erlang distribution at use
rate r and stochasticity absorption factor sa are defined in
(1) and (2). They match the classical Erlang distribution
with shape sa and rate r:sa [18]. PDF and CDF with
different stochasticity absorption factors but a constant rate
are plotted in Fig. 2.

fr;saðtÞ ¼
ðr:saÞsatsa�1 expð�r:sa:tÞ

ðsa� 1Þ! ; ð1Þ

Fr;saðtÞ ¼ 1� expð�r:sa:tÞ
Xsa�1

n¼0

ðr:sa:tÞn

n!
: ð2Þ

Let an action have its duration following an Erlang
distribution at use rate r and stochasticity absorption
factor sa. The average duration of this action is r�1 with a
variance of r�2sa�1. Fr;saðtÞ gives the probability of firing
the action within a time t. Given x actions having,
respectively, use rates r1; . . . ; rx, and stochasticity absorp-
tion factors sa1; . . . ; sax, the probability that the yth action is
fired is given by (3) [16]:

Z 1
0

fry;sayðtÞ
Y
w 6¼y
ð1� Frw;sawðtÞÞdt: ð3Þ
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Fig. 1. Operational semantics for the stochastic �-calculus (Definition 1).

TABLE 1
Free and Bound Channels for an Action �



3.2 Stochastic �-Calculus Construction

In this section, a construction of S�Er processes into S�e is
proposed. This construction is purely syntactic: There is no
explicit CTMCs building and its complexity is linear with
the size of the S�Er expression. This mapping also allows
the analysis of S�Er processes by classical tools (simulators,
model-checkers, etc.) that assume exponential distributions
for transitions.

The construction is done through a mapping operator
½½:��e, where . stands for an S�Er term. If P is an S�Er term,
½½P ��e is an S�e term showing the same behavior as P using
only exponential distributions (this is to be more formally
detailed in this section). The full mapping of S�Er terms
into S�e is given by Definition 2. It is worthwhile to notice
that this construction can be applied to any S�Er processes.

We sketch this transformation. Beforehand, to each couple
of parameters ðra; saaÞ of the S�Er process, a parameter r0a ¼
ra:saa is set for the resulting S�e process. It is assumed that
saa > 1, i.e., the action does not follow an exponential
distribution. The goal is then to execute saa times the
exponential action on a (either an internal action �a or a
communication on channel a) before applying it (i.e.,
moving to the next process). To achieve such a behavior, a
counter is associated with the action on a in the process
definition. If the counter equals saa, the next execution of
the action on a is applied normally. If the counter is less
than saa, then the execution of the action on a results in
repeating the process, with this counter incremented by
one. While this principle can be straightforwardly applied
to internal actions (6), the handling of inputs and outputs is
more tricky. Consider the following S�Er process A1,
present in the expression of A:

A1ðaÞ ::¼ �a:0; A2ðaÞ ::¼ a:0;
AðaÞ ::¼ A1ðaÞjA2ðaÞjA2ðaÞ:

ð4Þ

When counting the number of firings of the channel output �a,
there must be a differentiation between the receiving
instances of A2. To achieve this differentiation, the S�e
process A1 first outputs a pair of new channels a0; a00 on a.
After saa � 2 outputs on the private channel a0, A1 finally
outputs on a00, acting as the final action before evolving to
the next process. Technically, the private channels and the
counter of each instantiated communication absorption are

stored in lists that are passed as arguments in the process
definition (7). For the inputting process, no counting is
necessary: The process first inputs the two private channels a0

and a00, stores these channels in lists, and adds them to the
race conditions. An input on a0 means the stochasticity
absorption is not complete, so the current process has to be
reiterated. An input on a00 means the communication is fully
absorbed; the next process is called. As for the channel
output, the set of pairs of private channels has to be passed
as arguments (8).

Basically, the construction replaces each action at use rate r
and stochasticity absorption factor sa with sa actions
following an exponential law at use rate r:sa. A communica-
tion over a channel a is not literally repeated saa times, but
rather repeated saa times over channels a, a0, and a00 together.

Definition 2 (½½:��e). Let ½½:��e be the map from S�Er processes and

definitions into S�e processes and definitions given by the

rules below.
Notations. Given a set I of m indexes, ~� stands for

c1; . . . ; cm, a01; . . . ; a0m, a001 ; . . . ; a00m. 81 � i � m, ci is either a
positive integer or a list of positive integers and a0i and a00i are
lists of channels. #a0i is the length of the list a0i. The
nth element of the list a0i is denoted by a0in. ~�fciþ ¼ 1g stands
for ~� having ci incremented by one. ~�f2 :: ci; a

0 :: a0ig stands
for ~� having 2 (respectively, a0) added to the list ci
(respectively, a0i). �aða0; a00Þ (respectively, aða0; a00Þ) stands for
the outputting (respectively, inputting) on channel a of the
couple of channels a0; a00.

½½0��e ¼ 0 ½½�xP ��e ¼ �x½½P ��e
½½P jQ��e ¼ ½½P ��ej½½Q��e ½½½cond�P ��e ¼ ½cond�½½P ��e:

. Process definition:

½½Að~zÞ::¼
X
i2I

Ci��e ¼ Að~z; ~�Þ ::¼
X
i2I
½½Ci��e; ð5Þ

with ~� \ nðAð~zÞÞ ¼ ;.
. Stochasticity absorption factor equals 1:

½½�t:P ��e ¼ �t:½½P ��e
½½�ay:P ��e ¼ �ay:½½P ��e ½½ay:P ��e ¼ ay:½½P ��e:

In the following, it is assumed that stochasticity

absorption factors are greater than 1. i stands for the
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index of the process in the race condition Að~zÞ ¼P
i2I Ci.

. Internal action:

½½�t:P ��e ¼ ½ci < sat��t:Að~z; ~�fciþ ¼ 1gÞ
þ ½ci ¼ sat��t:½½P ��e:

ð6Þ

. Channel output:

½½ay:P ��e
¼ �a0�a00�aða0; a00Þ:Að~z; ~�f2::ci;a

0::a0i ;a
00::a00i gÞ

þ
X#ci
n¼1

½cin < saa�a0in:Að~z; ~� cinþ¼1f gÞ

þ ½cin ¼ saa�a00i ny:½½P ��e

ð7Þ

w i t h ra0 ¼ ra00 ¼ r0a a n d fa0; a00g \ ðfnðAÞ [
fnðP ÞÞ ¼ ;.

. Channel input:

½½ay:P ��e ¼ aða0; a00Þ:Að~z; ~� a0::a0i ;a
00::a00if gÞ

þ
X#a0i
n¼1

a0in:Að~z; ~�Þ þ a
00
i ny:½½P ��e

ð8Þ

with fa0; a00g \ ðfnðAÞ [ fnðP ÞÞ ¼ ;.
. Process call, all counters and lists are initialised to 0

and empty, respectively:

½½Að~zÞ��e ¼ Að~z; ~�1Þ ð9Þ

with, 8i 2 I, a0i ¼ a00i ¼ ;, and

ci ¼
1; if �ðCiÞ ¼ �t;
;; else:

�

The mapping of S�Er processes defined in (4) using the

½½:��e operator results in the following S�e processes:

A1ða; c1; a
0
1; a
00
1Þ

::¼ �a0�a00�aða0; a00Þ:A1ða; 2 :: c1; a
0 :: a01; a

00 :: a001Þ

þ
X#c1

n¼1

½c1n < saa�a01n:A1ða; c1fc1nþ¼1g; a01; a001Þ

þ ½c1n ¼ saa�a001ny:0;

A2ða; c1; a
0
1; a
00
1Þ ::¼ aða0; a00Þ:A2ða; c1; a

0 :: a01; a
00 :: a001Þ

þ
X#a01
n¼1

a01n:A2ða; c1; a
0
1; a
00
1Þ þ a001n:0;

AðaÞ ::¼ A1ða; ;; ;; ;ÞjA2ða; ;; ;; ;ÞjA2ða; ;; ;; ;Þ:

The major shortcoming of the presented encoding is the
complete lack of identification between processes. At each
iteration of the stochasticity absorption, the process in-
volves a race between unguarded new initiation and
guarded continuation and completion choices; thus there
may be a redundant output of new channels a0 and a00 when
communicating with a same process. Also, no explicit
garbage collection is done by the encoding, preventing the
release of abandoned channels. A more efficient, yet more
technical, implementation of the S�e construction of S�Er
processes addressing these points is given in Supplemental
Material A, which can be found in the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TSE.2010.95.

3.3 Correctness of the Construction

This section establishes the necessary lemmas to prove that
both qualitative and quantitative behaviors are preserved
by the S�e construction of S�Er processes. Fig. 3 identifies
the transition rules for a S�e process resulting from the
construction defined in Definition 2.

Hereafter, processes A;B;C;D are assumed to be
distinct. The S�Er process definition Að~zÞ mapped using
the ½½:��e operator is denoted by Aeð~z; ~�Þ (and similarly for the
other processes). Transitions between S�Er (respectively,
S�e) processes are denoted by !e (respectively, ! E). !�e
stands for a sequence of !e .

The following lemma verifies that for each S�e process
transition, there exists the corresponding transition between
S�Er processes.

Lemma 1. Aeð~z; ~�Þ ! eBeð ~w; ~%Þ only if Að~zÞ ! EBð ~wÞ.
Proof. Straightforward from Definition 2. tu

The following lemmas ensure, for both internal actions
and communications, that for each S�Er process transition, a
sequence of transitions between S�e processes exists and this
sequence follows the same distribution as theS�Er transition.

Lemma 2. Að~zÞ ! �tEBð ~wÞ ¼) Aeð~z; ~�1Þ ! �
eBeð ~w; ~%1Þ.
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Fig. 3. Operational semantics derived from Definition 2 for internal actions and channels input/outputs. i is the index of the action � in the sum
defined by the S�Er process A. ~%1 is computed as ~�1 in (9).



Proof. Let i be the index of the internal action �t in the sum

defined by the process A. At the initial call of Aeð~z; ~�1Þ,
ci ¼ 1 (9). As long as ci < sat, only the transition TAUwait

can be applied. After each of these transitions, ci is

incremented by 1. When ci reaches sat, TAUeff is the only

transition applicable, resulting in a transition toward

Beð ~w; ~%1Þ. tu
Lemma 3. The duration of Aeð~z; ~�1Þ ! �

eBeð ~w; ~%1Þ follows the

same distribution as the transition Að~zÞ !�t
E
Bð ~wÞ.

Proof. From the previous lemma, there exists the sequence

of transitions TAUwait; . . . ;TAUwait;TAUeff :

Aeð~z; ~�1Þ !e
�t � � �Aeð~z; ~�kÞ !e

�t
Beð ~w; ~%1Þ;

where ~�k is ~�1 having ci ¼ k. From the conditions for

applying TAUeff transition, k ¼ sat. tu

Lemma 4. If Að~zÞ !E
ay

Bð ~wÞ and Cð~z0Þ !E
ay

Dð ~w0Þ,

Að~zÞjCð~z0Þ !E
_a
Bð ~wÞjDð ~w0Þ ¼) Aeð~z; ~�1ÞjCeð~z0; ~�01Þ

!�e Beð ~w; ~%1ÞjDeð ~w0; ~%01Þ:

Proof. The INeff transition is always reachable after an INinit

transition and a certain number of INwait transitions, so

Beð ~w; ~%1Þ is always reachable from Aeð~z; ~�1Þ. Similarly,

Deð ~w0; ~%01Þ is always reachable from Ceð~z0; ~�01Þ using

OUTinit, saa � 2OUTwait transition, and one OUTeff

transition. tu
Lemma 5. The duration of the sequence Aeð~z; ~�1ÞjCeð~z0; ~�01Þ !�e
Beð ~w; ~%1ÞjDeð ~w0; ~%01Þ follows the same distribution as the

transition Að~zÞjCð~z0Þ !E
_a
Bð ~wÞjDð ~w0Þ.

Proof. From the previous lemma and constraints on the

OUTwait transitions, the following sequence of transitions

exists and is always enabled:

Aeð~z; ~�1ÞjCeð~z0; ~�01Þ !e
_a
Aeð~z; ~�2ÞjCeð~z0; ~�02Þ

!e

_a0 � � �Aeð~z; ~�kÞjCeð~z0; ~�0kÞ

!e

_a00
Beð ~w; ~%1ÞjDð ~w0; ~%01Þ;

with exactly saa � 2 transitions ! _a0e. tu

3.4 Simple Example

We apply the results obtained in this section to a simple

example: an infinite looping process (10):

AðlÞ ::¼ �t:Að1� lÞ l 2 f0; 1g: ð10Þ

Basically, starting from Að0Þ, we expect to observe an

infinite sequence of value change for l (0; 1; 0; 1; . . . ).

Between each transition, the internal action �t is performed.
The result of the map of the S�Er process defined in (10)

to a S�e process is given by (11):

Aðl; c; ;; ;Þ ::¼ ½c < sat��t:Aðl; cþ 1; ;; ;Þ
þ ½c ¼ sat��t:Að1� l; 1; ;; ;Þ:

ð11Þ

Fig. 4 plots the value of the argument l of process A

during simulations of ½½Að0Þ��e ¼ Að0; 1Þ under SPiM [9], [19]

with an identical rate but different stochasticity absorption
factors.

When no stochasticity absorption is applied, we observe
a strong variance of the duration of the internal actions, as
imposed by the exponential distribution. By increasing the
stochasticity absorption factor, this variance reduces. Reg-
ular oscillations are observed with a high stochasticity
absorption factor.

4 FIRING INTERVALS

The aim of this section is to point out a link between the use
rate and stochasticity absorption factor of an action and the
interval of time in which it is fired at a given confidence. This
time interval is called the firing interval (Definition 3). This
section provides a set of statistical tools that may help the
modeling and checking of temporal and stochastic systems
where durations of transitions follow an Erlang distribution.

Definition 3 (Firing Interval). Given a use rate r and a
stochasticity absorption factor sa, the Firing Interval at
confidence coefficient 1� � is noted FI�ðr; saÞ ¼ ½d;D�,
where the probabilities of firing the action within times d
and D are given by Fr;saðdÞ ¼ �

2 and Fr;saðDÞ ¼ 1� �
2 ,

respectively; Fr;sa is the CDF defined by (2) in Section 3.1.

At modeling time, and more especially when parameter-
izing a model, it may be more natural to reason with firing
intervals than with rate and stochasticity absorption factor
pairs. Here, we provide estimators and approximating
functions to translate between a firing interval and rate and
stochasticity absorption parameters.

These bring different uses to the stochastic absorption
factor, depending on the nature of the modeled system. On
the one hand, the stochasticity absorption factor expresses
the confidence in the precise duration of the action: the
higher the confidence in the action duration, the more the
stochasticity absorption factor can be raised. On the other
hand, the stochasticity absorption supplies the ability to
reproduce actions with intrinsic stochasticity where time
bounds are known.

As supplementary modeling references, we point out
that there exist methods for inferring the shape [20] and the
scale [21] parameters of a gamma distribution from a set of
time measurement data. The conversion from gamma
parameters to Erlang parameters is discussed below.

4.1 From Parameters to Firing Interval

Given the rate and stochasticity absorption parameters of an
action, we are interested in computing the confidence interval
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Fig. 4. Plot of the l value during simulations of the S�Er process defined
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for the time at which the action will be fired. Let 1� � be the
confidence coefficient for computing the firing interval. We
search d and D such that Fr;saðdÞ ¼ �

2 and Fr;saðDÞ ¼ 1� �
2 ,

where Fr;sa is the CDF of the Erlang distribution of use rate r
and stochasticity absorption factor sa (2). The function which
associates the time t with 0 � x � 1 such that Fr;saðtÞ ¼ x is
known as the quantile function, and is noted F�1.

Because of its relation with the incomplete gamma
function, the quantile function of the gamma distribution,
hence of the Erlang distribution, has no easy analytical
expression and cannot be used directly [22]. However,
efficient approximation algorithms for F�1 exist [23], [24].
The widely used statistical tool R [25] proposes an
implementation of such an algorithm. As R is distributed
with a C programming language library, one can easily
access this implementation from independent programs. To
compute the quantiles for the Erlang distribution using R,
the qgamma function can be used. Here is an instance of a R
session for computing the firing interval of an action at use
rate r and stochasticity absorption factor sa:

d qgammað�=2; shape ¼ sa; rate ¼ r � saÞ;
D qgammað1� �=2; shape ¼ sa; rate ¼ r � saÞ:

Fig. 5 shows the influence of the use rate and the
stochasticity absorption factor on the firing interval.

4.2 From Firing Interval to Parameters

Given a firing interval ½d;D� at a confidence coefficient
1� �, we look for a rate r and stochastic absorption factor
sa such that FI�ðr; saÞ ¼ ½d;D�. To achieve this goal,
estimators of r and sa (respectively, r̂� and ŝa�) are built
as a function of the lower and upper bounds of the firing
interval, d and D, respectively.

In a first phase, the integer constraint on the stochasticity
absorption factor is released to consider the gamma
distribution at use rate r 2 IR�þ and stochasticity absorption

factor sa 2 IR�þ. As there is no analytical expression of the
quantile function of the gamma distribution, expressing r
and sa as a function of the confidence interval cannot be
done analytically either. Estimators have been obtained by
regression on a set of generated rates and stochasticity
absorption factors for which the firing intervals have been
computed. For this paper, d and D were computed at a
confidence coefficient of 95 percent for all rounded log sa
between 0 and 4.5 (step of 0.1) and all log r between �8 and
2 (step of 0.1). Fig. 6 shows the heat map for the r and sa
parameters as a function of the bounds d and D of firing
intervals for such a generation.

From the 3D plots, we have manually determined
regressions fitting the data. Parameters of these regressions
have then been abstracted as they may depend on the
confidence coefficient value. The estimator we propose for
the use rate, noted r̂�, is given by (12), and the one we
propose for the stochasticity absorption factor, noted ŝa�, is
given by (13):

r̂� ¼ ðwþ x expð�y:dÞÞðdþDÞ�1; ð12Þ

ŝa� ¼ exp u
D

d

� �v� �
; ð13Þ

where u; v; w; x; y are parameters depending on the con-
fidence coefficient 1� �.

The parameters of these expressions have been estimated
using the tool R by fitting (12) and (13) to generated data.
Table 2 sums up the estimators found for r and sa at
different confidence coefficients. The lack of usable analy-
tical expressions around the gamma distribution makes it
difficult to evaluate. Fig. 7 shows an attempt to evaluate the
quality of these estimators by comparing, for some
generated data, the expected value and the estimated value.
This kind of evaluation is similar to a confusion matrix, as
used in machine learning [26]. It is worthwhile noticing that
the estimators are bijective functions, i.e., each firing
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Fig. 5. Evolution of the firing interval when the stochasticity absorption factor sa increases. The thick vertical line is the average duration for each
parameter. The confidence coefficient has been fixed to 95 percent (� ¼ 0:05).



interval corresponds to one and only one use rate and
stochasticity absorption factor.

The resting point is the integer constraints on the
stochasticity absorption factor. Because of the bijectivity of
the estimators, if the estimated stochasticity absorption is
not an integer, there is no Erlang distribution fitting with
the given firing interval. From this observation, the search
for approximating Erlang distribution parameters is at the
confidence of the modeler. However, one can notice that
rounding the estimated stochasticity absorption factor to the
upward (respectivley, downward) integer results in a firing
interval included by (respectively, including) the originally
given firing interval. In that way, one can easily estimate an
over or underapproximation of the couple of parameters
matching an arbitrary firing interval. One can observe that
the estimation of parameters for a given firing interval is
really fast as it is an evaluation of the function exponential.

4.3 Sequence of Actions

To conclude this section, we briefly discuss the distribution
of a sequence of actions and its relation with firing intervals.

Let us consider k actions with their respective use rates
r1; . . . ; rk and stochasticity absorption factors sa1; . . . ; sak.
Considering they are fired successively, what is the firing
interval of the sum of the actions?

Unfortunately, it can be easily checked that the firing
interval ½d;D� of a sequence of Erlang distributed actions is
not the sum of the firing intervals of the individual
actions—i.e., d 6¼ d1 þ � � � þ dk and D 6¼ D1 þ � � � þDk where
di (respectively, Di) is the lower (respectively, upper) bound
of the firing interval of the ith action. However, the sum of
Erlang distributed random variables with different para-
meters has been studied in [27] and [28], and [29] gives an
easily computable expression of the CDF for such a
distribution. In this way, the firing interval of the sum of
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Fig. 6. Heat map of the use rate (left) and stochasticity absorption factor (right) as a function of the bounds d and D of the firing Interval FI0:05 ¼ ½d;D�
for some generated data.

Fig. 7. Evaluation of obtained estimators for use rate r and stochasticity absorption factor sa with confidence coefficient of 95 percent on some
generated data. Points are the estimated parameter value. A perfect estimator would put all points on the truth line.

TABLE 2
Obtained Estimators of Parameters r and sa for the Firing Interval ½d;D� at Different Confidence Coefficients



Erlang distributed random variables can be computed using
standard approximation techniques of the quantile function
(like bisections). The dual operation, consisting of inferring
the parameters of the Erlang sum from the firing interval,
raises several difficulties, such as the loss of bijectivity. We
consider such an issue as out of the scope of this paper.

5 MODEL-CHECKING USING PRISM

The probabilistic model checker PRISM [11] offers efficient
model-checking for CTMCs. In PRISM, transitions are
specified within PRISM modules. Each module has a finite
set of local variables. The union of the local variables of all
modules gives the global state of the model, denoted by V .
A transition is the result of an action specified as follows:

½act� guard! r : ðx01 ¼ u1Þ & . . . &ðx0k ¼ ukÞ;

where act is an optional action label, guard a predicate over
V , xi is a local variable, and ui a function over V . r 2 IR�þ is
the use rate of the action and is assumed to be 1 when
omitted. To be applicable, a labeled action has to be
synchronized with an action of the same label in another
module. The rate of such a synchronized action is the
product of the rates of both actions. x0i stands for the value
of xi once the action is applied.

An efficient translation of the classical exponentially
distributed stochastic �-calculus (S�e) into PRISM has been
proposed by Norman et al. [10]. Their translation requires the
overall process structure to be rearrangeable to the formP ¼
�x1 . . . �xkðP1j . . . jPnÞ, where each Pi contains no � operator
nor recursive use of the j operator, especially to ensure a finite
number of states. However, given an S�Er process P

respecting these constraints, the constructed S�e process
½½P ��e does not respect this limitation. Indeed, the proposed
construction of the output action into S�e (7) involves a
recursive generation of fresh channels a0; a00. An obvious
solution is to directly translate the S�Er process to PRISM.

In this section, the translation of S�e processes to PRISM
proposed by Norman et al. [10] is adapted to the translation
of S�Er process. Therefore, this allows an efficient model-
checking of S�Er processes, which is a new result. To end,
the overall approach of this paper is illustrated again by a
simple example.

5.1 PRISM Construction of the Stochasticity
Absorption Factor

Let P be a stochastic �-calculus expression of the form P ¼
�x1 . . . �xkðP1j . . . jPnÞ, where each Pi contains neither the �
nor j operator. In this way, each process Pi can be described
by a transition graph where nodes are race conditions
annotated by Qi;Ri; . . . [10]. Hence, each Qi;Ri; . . . stands
for a state of the process Pi. Using the translation detailed in
[10], the PRISM model corresponding to P can be
computed. It results in n PRISM modules, one per Pi, each
having a variable si representing the current state of the
process Pi. Variables representing channels to be sent or to
be received are also attached to modules. Obtained actions
are of three different main forms:

½�ðsi ¼ QiÞ & M ! rt : ðs0i ¼ RiÞ; ð14Þ

½a Pi Pj y�ðsi ¼ QiÞ & M ! ra : ðs0i ¼ RiÞ; ð15Þ

½a Pj Pi y�ðsi ¼ QiÞ & M ! ðs0i ¼ RiÞ&ðz0 ¼ yÞ: ð16Þ

Each of these forms represents the process Pi at state Qi

applying a certain action under the condition M and thus
changing to state Ri. These actions are, respectively, the
internal action (14), the output (either bound or free) of y on
a channel a to Pj (15), and the input of y as z on a channel a
from Pj (16). Depending on the boundedness of the sent
channel y, supplementary conditions are added to M. In the
remainder of this section, we assume that any identical
action labels inside the same module have disjoint guards,
i.e., both are never part of the same race condition.

Support for the stochasticity absorption within this
translation is added in a way similar to the construction
of the stochasticity absorption factor within S�e presented
in Section 3: A counter is attached to each action. When this
counter reaches the stochasticity absorption factor, the
transition is enabled. For identifying internal actions, a
label is attached to them: Pi t is the label of the internal
action �t of Pi. The set of labels of internal and output
actions of Pi is denoted by LPi� ¼ fa Pi Pj y; . . . ; Pi t; . . .g,
and the set of labels of input actions of Pi is denoted by
L�Pi ¼ fa Pj Pi y; . . .g. Basically, there is one counter for
each action having a label l 2 LPi�. This counter is defined
as a local variable c l inside the PRISM module for Pi. Each
time an output or an internal action is performed, the
corresponding counter is incremented by one. The update
of the action is processed when this counter reaches the
expected stochasticity absorption factor.

When Pi changes state, each counter related to its new
state has to be properly initialized. However, as PRISM
forbids the update of variables belonging to other modules,
Pi cannot directly update the counters it does not own that
are related to all actions labeled by l 2 L�Pi . To cope with
such an issue, a Boolean variable d l is defined in the
module Pi for each l ¼ a Pj Pi y 2 L�Pi , and is set to true
when the reset of c l is required. The module owning c l has
to reset the counter when d l is true.

The following section precisely describes the transforma-
tions needed to add support for the stochasticity absorption
factor to each of the PRISM modules Pi resulting from
translation of Norman et al [10].

5.1.1 Additional Local Variables

For each label l 2 LPi�, the variable c l stands for the counter

of the stochasticity absorption of the action labeled by l:

c l : ½1::sa l� init 1;

For each label l 2 L�Pi , the Boolean variable d l is true if

Pi has changed its state while the absorption of the action

played by l has started. In other words, d l is true if the

associated counter c l has to be reset:

d l : bool init false;

Hereafter, the PRISM update for the reset of all
stochasticity absorption counters is denoted by RPi� (17).
The update of d l variables, l 2 L�Pi , is denoted by S�Pi (18).
Basically, d l is set to true if and only if the associated
counter c l is different from its default value:
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RPi� ¼
def

&
l2LPi�
ðc l0 ¼ 1Þ; ð17Þ

S�Pi ¼
def

&
l2L�Pi
ðd l0 ¼ c l > 1Þ; ð18Þ

with &i2f1;...;kgui ¼ u1& � � �&uk.

5.1.2 Internal Action

Let l ¼ Pi t be the label of an action resulting from the
translation of an internal action �t. The use rate and
the stochasticity absorption factor of this internal action
are, respectively, rt and sat. The PRISM action respects the
following form:

½� G! rt : U ;

where G stands for the guard of the action and U for the
updates to perform. The stochasticity absorption of the
action is achieved by replacing the previous statement by
the actions below:

½� G & ðc l < satÞ ! rt � sat : ðc l0 ¼ c lþ 1Þ;
½� G & ðc l ¼ satÞ ! rt � sat : U & RPi� & S�Pi ;

Therefore, the update U is only applied after exactly
sat transitions at rate rt � sat since Pi changed its state.

5.1.3 Channel Output

Let l ¼ a Pi Pj y be the label of an action resulting from the
translation of an output of channel y on channel a. The use
rate and the stochasticity absorption factor of this channel
are, respectively, ra and saa. The PRISM action respects the
following form:

½l� G! ra : U;

where G stands for the guard of the action and U for the
updates to be performed. The stochasticity absorption of the
action is achieved by replacing the previous statement by
the actions below:

½l wait� G & d l! ra � saa : ðc l0 ¼ 2Þ;
½l wait� G & !d l & ðc l < saaÞ ! ra � saa :

ðc l0 ¼ c lþ 1Þ;
½l� G & !d l & ðc l ¼ saaÞ ! ra � saa :

U & RPi� & S�Pi ;

To perform the update U , Pi has first to perform saa � 1
synchronizations on the l wait label and finally one synchro-
nization on the l label. The statement where d l is true
corresponds to a reset of the counter c l to 1. Therefore, the
value of this counter becomes 2 after the action is performed.

5.1.4 Channel Input

Let l ¼ a Pj Pi y be the label of an action resulting from the
translation of an input of channel y on channel a. The
PRISM action respects the following form:

½l� G! U ;

where G stands for the guard of the action and U for the
updates to be performed. The stochasticity absorption of the
action is achieved by replacing the previous statement by
the actions below:

½l wait� G! ðd l0 ¼ falseÞ;
½l� G! U & RPi� & S�Pi ;

To perform the update U , Pi has first to perform saa � 1
synchronizations on the l wait label and finally one
synchronization on the l label. From the transformation
corresponding to the channel output on Pj, the counter c l is
reset after a synchronization on l wait. In this way, d l has to
be set to false in the update so the counter c l can increment
in future synchronizations.

By applying these transformations, it is ensured that each
update U is performed after a duration following the sum of
sa exponential random variables at rate r � sa.

We point out that the proposed encoding of Erlang
transitions within PRISM may be applied to other models
than those resulting from the translation of a stochastic �-
calculus expression. The main point of this construction is
to reset the stochasticity absorption counter as soon as the
corresponding synchronization is no longer possible. At
each update, all synchronizations that are no longer
possible have to be correctly detected. While this requires
a precise handling of synchronization guards, this should
be manageable for numerous PRISM models.

5.2 Simple Example

As an application of the use of the PRISM model checker for
analyzing S�Er processes, and as an illustration of the
overall method presented by this paper, we propose the
study of an example process P defined in (19).

A1ða; b; cÞ ::¼ a:A0ðcÞ þ b:A1ða; b; cÞ A0ðcÞ ::¼ c:0;
B1ða; b; cÞ ::¼ b:B0ðcÞ þ a:B1ða; b; cÞ B0ðcÞ ::¼ c:0;

P ::¼ �a�b�cðA1ða; b; cÞjB1ða; b; cÞÞ:
ð19Þ

Intuitively, two scenarios can happen: either A1 outputs
first on b then B1 becomes B0 and the system ends in
deadlock; or B1 outputs first on a then A1 becomes A0 and
the system ends in deadlock.

For this simple example, we search for reducing close to
zero the probability that A1 becomes A0, i.e., the probability
that B1 outputs on a. As supplementary constraints, the
average duration for using channels a and b is fixed to,
respectively, 4 and 1 time units (i.e., ra ¼ 0:25 and rb ¼ 1).
For instance, these constraints may have been imposed by
observations of the real system modeled by P . The property
to be checked is expressed in PRISM as P ¼ ? ½Fða ¼ 0Þ�
which means the probability that A0 is eventually run.

We first study this model as a S�e process. Listing 1 shows
the result of the translation ofP into PRISM using the method
of Norman et al. Verifying the previously given property
with PRISM results in a probability for running A0 of 0.2.

Listing 1. Translation of the example stochastic �-calculus

model (19) as a S�e process into PRISM.
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Let us consider P as an S�Er process. For the sake of
simplicity, we will consider that both a and b have the same
stochasticity absorption factor.

In terms of firing intervals, we look for a stochasticity
absorption factor for which the firing interval of b is entirely
before the firing interval of a. By computing the firing interval
for both these actions with different stochasticity absorptions
factors—as shown in Fig. 8—one can observe that the
probability of firing a before bwill be significantly decreased
with a stochasticity absorption factor of 5. By using a
stochasticity absorption factor of 50, we expect the probability
of firing a first to be close to zero at confidence coefficient
95 percent.

To confirm these results, we now turn to the model-
checking of the S�Er process P using PRISM. Listing 2
shows the translation of P into PRISM using the construc-
tion presented above. With a stochasticity absorption of 5,
the probability that A0 runs is divided by 100 (almost 0.02)
compared to the case of no stochasticity absorption.
Increasing this stochasticity absorption factor to 50 reduces
this probability to approximately 10�11.

Listing 2. Translation of the example stochastic
�-calculus model (19) as a S�Er process into PRISM.

The S�e translation of this example is given in Supple-
mental Material B, which can be found in the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TSE.2010.95.

6 APPLICABILITY

This section discusses the applicability of the results
presented in this paper. At first, the complexity and
scalability of the translation of the Erlang models to
exponentially distributed models is tackled. A case study
demonstrating the benefits of using the stochasticity
absorption factor concludes this section.

6.1 Complexity and Scalability

The proposed translations (either in stochastic �-calculus or
in PRISM) are both linear with the size of the model, as they
are simple rewritings. The addition of stochasticity absorp-
tion within stochastic �-calculus models should stay
manageable by simulation tools, as it only decomposes
actions into multisteps actions. The model-checking of
models with numerous actions having high stochasticity
absorption factors may suffer from a state space explosion,
however. Techniques to overcome this difficulty are
discussed in the Section 7. Finally, the conversion of a time
interval into parameters of an Erlang distribution is efficient
since it is simply the evaluation of the exponential function.

6.2 Case Study

We show the benefits of the contributions presented in this
paper through a biological model of the segmentation
processes for the metazoan. This system has already been
studied in a differential equation framework in [14]. We
propose to extend the study of the system by introducing
stochasticity within reactions, modeled in stochastic
�-calculus. The use of stochasticity absorption allows to
reproduce and verify more precisely some timed properties.

The segmentation process is modeled as a marker, referred
to as A, which periodically becomes active or inactive. The
activity of the marker is controlled by a clock C and a global
switch F . While F is active, the clock regularly changes level
(active or inactive), and the marker, if deactivated, can
become active. Finally, when the clock is active, it deactivates
(if active) the marker. After a certain duration, the switch
deactivates itself, preventing the clock and the marker from
being active again. We propose a modeling of this system by
the following stochastic �-calculus expression:

F1ðhÞ ::¼ �f :F0ðhÞ F0ðhÞ ::¼ �h:0

C0ða; d; hÞ ::¼ �a:C0ða; d; hÞ þ �c:C1ða; d; hÞ þ h:0
C1ða; d; hÞ ::¼ �d:C1ða; d; hÞ þ �c:C0ða; d; hÞ
Aðl; a; dÞ ::¼ a:Að1; a; dÞ þ d:Að0; a; dÞ
�a�d�hðF1ðhÞjC0ða; d; hÞjAð0; a; dÞÞ:

The switch, initially active (F1), waits for a while before
becoming inactive (F0); F0 outputs on the channel h (for
“halt”), indicating that the system has to stop. If the clock is
inactive (C0 is running), it outputs on a to activate the
marker (A sets its level l to 1 when inputting on a).
Concurrently, the inactive clock waits for a delay �c to
activate itself (C1). As soon as C0 inputs on h (i.e., the switch
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is off), it becomes the null process, disabling the whole
system. Finally, the active clock outputs on d to deactivate
the marker (A sets its level l to 0 when inputting on d);
concurrently, it waits for a delay �c to deactivate itself.

The challenge of this modeling is to obtain a system
producing a fixed number of segments, i.e., the marker
becomes active a fixed number of time. We first use
exponentially distributed actions, and set the following
rates: rf ¼ 0:02 (on average, the switch remains active
50 time units); rc ¼ 0:1 (on average, the clock changes its
level every 10 time units); ra ¼ rd ¼ 1 (the activation/
deactivation of the marker takes one time unit, on average);
and rh ¼ 10. Thus, on average, we expect to observe three
marker activations.

Using PRISM, we compute the probability of observing
exactly three marker activations and obtain 0.15, which is
rather low. This result is not surprising since the exponen-
tial distribution has a large variance. By reducing the
variance of the delays �f and �c, we intend to reduce the
variance of the number of clock activations, and thus, by
transitivity, the variance of the number of marker activa-
tions. This variance reduction is achieved through the use of
stochasticity absorption factors. We arbitrarily fix the
stochasticity absorption factor sac ¼ 15 (leading to a firing
interval for �c between 4.6 and 17.9 time units, at confidence
coefficient 99 percent) and use the estimators of Section 4.2
to obtain the parameters for a firing interval between 45 and
55 time units (giving rf ¼ 0:0202 and saf ¼ 608). Having set
these parameters and using the translation of the Erlang
distribution within PRISM proposed in Section 5 (Listing 3),
the probability of observing exactly three marker activa-
tions increases to 0.86.

Listing 3. PRISM model from the translation of the Erlang
stochastic �-calculus models of metazoan segmentation.

The computation time of the probability rises from a few
milliseconds to a few minutes, showing a large growth of
the state space caused by the introduction of stochasticity
absorption factors. Supplemental Material C, which can be
found in the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TSE.2010.95, shows a
study on the sensitivity of stochasticity absorption factors sac
and saf for the intended probability.

The case study, based on the contributions of this paper,
has allowed us to model quite precisely temporal properties
in a stochastic framework. It also demonstrated the
influence of the stochasticity on the observed results, such
as the number of segments produced by the system.

7 OUR CONTRIBUTION AND RELATED WORK

The main contributions of this paper are the construction of
the stochastic �-calculus with Erlang distribution using the
Markovian stochastic �-calculus, together with the con-
struction of Erlang distribution in PRISM models translated
from the stochastic �-calculus. This paper also provides
tools establishing the link between temporal intervals and
parameters of Erlang distributions.

It is worth noticing that the simulation of the stochastic
�-calculus with general distribution has been studied in
[16]. The simulation works by recomputing the statistical
distribution of transitions after a transition has been chosen,
to take into account the elapsed time. Based on this method,
an implementation of the simulation of non-Markovian
processes for the BlenX language, which is close to the
stochastic �-calculus, has recently been proposed [30].
Another method is proposed in [31], which addresses the
simulation of non-Markovian chemical reactions, by pre-
cisely identifying each reacting molecules and by comput-
ing a priori the reaction times, and then selecting the lowest.
These approaches are quite different from the one proposed
in this paper as they apply only for simulation purposes,
whereas our construction allows the direct use of analysis
tools, such as model-checking tools (e.g., PRISM).

The method presented in this paper allows the model-
checking of stochastic �-Calculus with Erlang distribution,
under the restriction imposed by the PRISM translation
(Section 5). It is achieved by a translation of a model using
Erlang distribution into a Markovian model. Whereas the
model-checking is still manageable for a few transitions
having an Erlang distribution, it suffers from a state space
explosion when using large stochasticity absorption factors
(Section 6). However, one can notice that the CTMCs
obtained are very structured, suggesting that methods such
as symmetry reductions [32] or abstractions of sequences of
transitions [33] may provide more efficient probabilistic
model-checking.

Little work has been done to apply probabilistic model-
checking directly to models with general distributions. The
model-checking of semi-Markovian chains is studied in
[34], where time spent in states follows a general distribu-
tion. Despite some good results for the checking of a few
properties, they raise a negative conclusion, that is, the
model-checking becomes computably highly complex in the
scope of general distributions. An efficient model-checking
of stochastic automata with general distributions against a
simple probabilistic temporal logic is provided in [35].

In [36], the authors propose reducing the gap between

stochastic and time extensions of Petri nets. They define a

new way to describe the structure of the nets, Discrete Phase

Type Timing, and use it to build both a functional model in

the sense of a time Petri net [13] and a stochastic model. The

so-called discrete phase type timing can represent either

probabilistic or nondeterministic choice over an interval.
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8 CONCLUSION

In this paper, we presented a technique for tuning temporal
features within the stochastic �-calculus. This tuning is done
through a stochasticity absorption factor, which reduces the
variance around the average duration of transitions, allow-
ing then the specification of transitions within firing time
intervals, given a confidence coefficient. The stochasticity
absorption is achieved by replacing the exponential dis-
tribution for firing actions by the Erlang distribution.
Estimators permitting the computation of stochastic para-
meters for transitions from a desired firing time interval
have been provided in this paper. We claim that such an
approach makes it possible to have more accurate specifica-
tions of the timed behavior of a stochastic system.

We presented a translation of the Erlang distributed

stochastic �-calculus into the exponential distributed one. In
this way, such tuned models can be simulated and analyzed
using the large panels of standard tools, which assume an
exponential distribution of transitions. The probabilistic
model-checking of the stochastic �-Calculus with Erlang
distribution is achieved using PRISM, by a construction of
the stochasticity absorption factors within PRISM models
obtained from a translation of the stochastic �-Calculus [10].
It has been raised that, while the simulation of the tuned
models is still efficient, the model-checking may suffer from
a state space explosion. Future work may study the use of
current state-of-the-art techniques of state space reduction
in CTMCs to overcome this explosion.

The applicability of our approach to the modeling of a
biological system has also been shown, giving its usefulness
for modeling computational processes in general. The tuning
of temporal parameters within stochastic models provides a
precise method for models in which both stochasticity and
time are important features.
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