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Abstract. Studying spatial effects in signal transduction, such as co-
localization along scaffold molecules, comes at a cost of complexity. In
this paper, we propose a coarse-grained, particle-based spatial simulator,
suited for large signal transduction models. Our approach is to combine
the particle-based reaction and diffusion method, and (non-spatial) rule-
based modeling: the location of each molecular complex is abstracted by
a spheric particle, while its internal structure in terms of a site-graph is
maintained explicit; The particles diffuse inside the cellular compartment
and the colliding complexes stochastically interact according to a rule-
based scheme. Since rules operate over molecular motifs (instead of full
complexes), the rule set compactly describes a combinatorial or even
infinite number of reactions. The method is tested on a model of Mitogen
Activated Protein Kinase (MAPK) cascade of yeast pheromone response
signaling. Results demonstrate that the molecules of the MAPK cascade
co-localize along scaffold molecules, while the scaffold binds to a plasma
membrane bound upstream component, localizing the whole signaling
complex to the plasma membrane. Especially we show, how rings stabilize
the resulting molecular complexes and derive the effective dissociation
rate constant for it.

1 Introduction

Signal transduction pathways can contain several proteins and activation steps
which give rise to complex spatiotemporal dynamics. Interactions between signal-
ing molecules do not only transmit activations, but can also localize the molecules
to certain structures or compartments in the cell [20]. This work aims at a sim-
ulator that is able to handle the complexity, and includes the localization of the
molecules. Current modeling techniques include ordinary differential equations
(ODE), or, if space is important, the corresponding partial differential equations
(PDE). If the stochasticity is significant, the chemical or reaction-diffusion mas-
ter equation (CME/RDME) describes the system dynamics. More specifically,
each molecule can be tracked individually in the simulation, e.g. using Brown-
ian/Smoluchowski or Green’s function dynamics (see e.g. review [13]).

Transient complex formation of proteins and their post-translational modi-
fication in signaling can lead to a combinatorial number of distinct molecular
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species. Rule-based languages, such as Kappa [7] or BioNetGen [9], provide a
compact representation of such combinatorial processes. Nonspatial rule-based
models can be efficiently simulated [3], and are amenable to further quantitative
analysis, e.g. formal model reduction [10, 11].

An extended Kappa framework was proposed in order to model the internal
spatial structure of complexes that form during the process [4]. The Meredys
simulator [21] in addition includes the molecule positions. Furthermore SRSim
[12] provides a high resolution spatial rule-based extension, tracking the posi-
tion and internal structure of all complexes. Indeed, the possibility to specify
the binding angles sometimes naturally enforces a unique assembly path of a de-
sired complex structure: for example, a polymer chain with angles between the
bonds of π − 2π/N in a plane will form a ring of N monomers, and local rules
are sufficient to describe the global structure [4]. However, the exact molecular
geometry of signaling molecules is often not known. In such cases, the simula-
tion including the binding angles becomes more complex, without contributing
additional insights.

Here we present a framework that supports a particle-based, spatial simula-
tion, but omits the internal geometry. Still, as the internal structure in terms of
a site-graph is maintained explicit, their cooperative effect on complex stability
can be investigated effectively. In particular, we derive the dissociation rate con-
stant for rings. The simulation is applied to MAPK (Mitogen activated protein
kinase) signaling in yeast, where both localization and activation is mediated by
a scaffold [20].

The paper is structured as follows. In Sect. 2, the general particle-based
framework and the biophysical principles of complex formation are introduced.
The formal framework underlying the simulator is outlined in Sect. 3. In Sect.
4, we show the application to MAPK signaling and we discuss the results.

2 Coarse-grained Particle Diffusion and Reaction

The mobility of molecules in the cytoplasm is mainly governed by diffusion.
Diffusion can be modeled efficiently by a random walk of the molecules of interest
such that the myriad of solvent molecules can be omitted. We assume that the
properties of the solvent allow us to use the Stokes-Einstein equation to obtain
the (translational) diffusion coefficient Di ∝ r−1i for a given molecular radius
ri of particle i. We also assume that rotational diffusion is much faster than
translational diffusion such that the actual shape of the molecules averages to a
sphere with radius ri at the temporal resolution of the method. Therefore only
the position but not the orientation of the molecules has to be tracked.

2.1 Remark on Diffusion-Controlled Reactions

Molecules can only react with each other if they are in contact/collide, and the
collision process is governed by diffusion. Accordingly the observable bulk/macro-
scopic reaction rate constant kij between particles i and j in solution is deter-
mined both by the rate constant of collisions kD(i, j) = 4π(ri + rj)(Di + Dj)
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(in 3D space) and the microscopic rate constant k′ij that determines the reac-
tive fraction of collisions [2]. For spherically symmetric molecules with isotropic
reaction properties the microscopic and macroscopic rate constant are related
in the form k−1ij = kD(i, j)−1 + k′ij

−1
(Collins-Kimball model). Reactions with

very high kij ≈ kD(i, j) require k′ij →∞, i.e. every collision leads to a reaction
such that they are diffusion-controlled. In contrast, reactions with kij � kD(i, j)
are reaction-controlled; in this case k′ij ≈ kij . A diffusion factor/function can be
introduced fD(i, j) := kD(i, j)/(kD(i, j) + k′ij) such that k = fDk

′ [2].
More in detail, signaling molecules have specific reaction sites, i.e. non-

isotropic reaction properties. Such molecules have to be in contact (by trans-
lational diffusion) and correctly aligned with their reaction sites (by rotational
diffusion). We define the corresponding nanoscopic rate constant as k′′ and the
conversion factor fDR such that k = fDRk

′′, however the derivation of fDR is
not straightforward and several approximations exist [2, 22]. For completeness we
also introduce fR = fDRfD

−1 for the conversion k′ = fRk
′′, i.e. for integrating

out the rotational diffusion effect only. In general: k ≤ k′ ≤ k′′.
Reversible reactions A+B � C with forward reaction at rate constant kAB

and backward kC require to scale both rate constants with f(A,B) in order
to maintain the macroscopic reaction equilibrium (dissociation constant Kd =
kC/kAB = k′C/k

′
AB = k′′C/k

′′
AB) [17, 14]. For consistency we define the respective

conversion factors f = 1 for unimolecular reactions that are not reversed by a
bimolecular reaction, such that microscopic rate constants are always defined.

2.2 General Particle-Based Diffusion and Reaction Method

The present method implements the λ-ρ model [8], i.e. a discrete time continuous
space random walk for diffusion. Each particle position xi is updated by

xi(t+∆t) = xi(t) +
√

2Di∆tξ (1)

with diffusion coefficient Di and standard normal random variable ξ. Particles
can overlap as discussed in [14], so collision testing is only needed for (static)
reaction compartment boundaries. Reactions are executed with a probability
that depends on their arity as follows.
Unimolecular reactions A → . . . at rate constant kA are executed in this
method in every step with probability

PA = 1− exp(−k′A∆t) ≈ k′A∆t if ∆t→ 0 (2)

for each molecule which is of type A [8]. Note that the Bernoulli-trial scheme
leads to a binomial distribution, which converges to the Poisson distribution for
small probabilities in each step (law of rare events). The Poissonian reaction
process has exponentially distributed inter event waiting times as expected.
Bimolecular reactions A+B → . . . can only occur if two molecules are closer
than their collision distance (rA + rB). If so, then the reaction is executed with
probability

PA,B =
k′AB∆t

4π(rA + rB)3/3
(3)
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as derived in [16]. The accuracy constraint PA,B < 0.2 gives an upper bound for
∆t, if larger ∆t are needed the reaction probability of [8] has to be used.
Higher order and Hill-type reaction schemes: for a particle-based simu-
lation higher order reaction models have to be composed into their elementary
uni- and bimolecular reaction steps (in which they also occur in nature).

2.3 Complexes

Complexes C that form out of A + B → C can still be modeled as spherical
particles. The complex radius rC is obtained e.g. under the assumption that the
volume/mass of A and B is redistributed into C with constant mass density, i.e.

rC =

(
3

4π

[
4πr3A

3
+

4πr3B
3

])1/3

=

(∑
i∈C

r3i

)1/3

(4)

as suggested in [23]. Alternatives for Eq. (4) are discussed and listed in Table
1 in [13]. The diffusion coefficient DC is given by DC = D0/r0r

−1
C based on a

reference D0 and r0 in the Stokes-Einstein relation. Reactions between complexes
α and β can occur when they are within their contact distance. The joint k′αβ =∑
A∈α

∑
B∈β k

′
AB (assume k′AB = 0 if no reaction between A and B is defined)

could directly be used to calculate the binding probability by Eq. (3). However we
decided to track each reaction individually as described in Sect. 3. Therefore also
all resulting bonds in a complex are tracked individually. Such a bond in complex
α between A ∈ α and B ∈ α can break with the corresponding dissociation rate
constant/probability defined for the interaction. But if the two formerly directly
connected molecules A ∈ α and B ∈ α are still connected by other bonds, they
will stay together – and aligned with their binding sites. Therefore A and B
can rebind in every step with PAB , leading to bond recovery with rate constant

k̄AB =
3k′′AB

4π(rA + rB)3
(5)

effectively in a first order reaction (cf. Eq. 3 and Eq. 2) [15]. The recovery reaction
does not take place in the (relatively large) reaction volume of the whole reaction
compartment but in the (relatively tiny) interaction volume of the two agents.
Therefore k̄ is large compared to all other rates, and the lifetime of the open
state of the bond τ ∝ k̄−1 is accordingly relatively small (cf. Test Case 2).

3 Spatial Stochastic Simulation of Rule-based Model

Each particle of the simulation is an instantiation of a molecular species. A
molecular species can be a protein, its post-translationally modified form or a
protein complex that consists of proteins bound together. In order to reflect this
internal structure of molecular species we represent them by site-graphs, in which
modifications of protein residues and bonds are explicitly encoded, as introduced
in Kappa [7].
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Notations. We denote by {e1 7→ v1, · · · , eN 7→ vN} the mapping from distinct
elements ei to values vi. Given a mapping A, dom(A) denotes its domain, and
A(e) the value associated to e in A. We also write A{e 7→ v} for the mapping A
updated so that e maps to v; and A \ e for the mapping A updated so that the
mapping from e is removed.

3.1 Site-graphs

A site-graph is an undirected graph where typed nodes have sites, and edges are
partial matchings on sites. Moreover, the sites which do not serve for forming
edges are called internal, and they are assigned a value from a predefined set.
The nodes of the site-graph can be interpreted as protein names, and sites of
a node stand for protein binding domains. Internal states are used to encode
post-translational modifications.

Let S denote the set of site labels, and I the set of internal values that can
be assigned to sites. The function I : S → P(I) denotes the set of internal
values that a site s can take. Let A be the set of node types. Each node type is
being equipped with a set of sites, defined by a signature map Σ : A → P(S).
Finally, the set of admissible bindings between sites is defined by the mapping
E : A×S → P(A×S) so that if (a′, s′) ∈ E(a, s) then necessarily (a, s) ∈ E(a′, s′).
A rule-based model is defined over a fixed contact map defined by the tuple
(A, Σ, E , I) that we consider constant in the rest of this section.

Definition 1. A site-graph is a tuple G = (V, T, F,E, ψ) with

1. a set of nodes V ,
2. a node type function T : V → A,
3. a node interface function F : V → P(S), such that for v ∈ V , F (v) ⊆
Σ(T (v)),

4. a set of edges between sites of different nodes, encoded by the function
E : V × S → V × S such that if E(v, s) = (v′, s′) then necessarily v 6= v′,
E(v′, s′) = (v, s), and (T (v′), s′) ∈ E(T (v), s).

5. a site evaluation function ψ : V × {s ∈ S | I(s) 6= ∅} → I, so that ψ(v, s) ∈
I(s).

Site-graphs will be used in two different contexts: (i) to model physically
existing complexes, also termed concrete site-graphs (or reaction mixtures), and
(ii) to specify the local interaction patterns (rewrite rules). The concrete site-
graphs must have all interfaces complete, in the sense that, for all nodes v ∈ V ,
F (v) = Σ(T (v)).

Definition 2. Site-graph G = (V, T, F,E, ψ) is a union of two site-graphs G1 =
(V1, T1, F1, E1, ψ1) and G2 = (V2, T2, F2, E2, ψ2), denoted by G = G1 ⊕ G2, if
V1 ∩ V2 = ∅, and V = V1 ∪ V2, F = F1 ∪ F2, E = E1 ∪ E2, ψ = ψ1 ∪ ψ2.

Definition 3. Given a site-graph G = (V, T, F,E, ψ), a sequence of edges
(((v1, s1), E(v1, s1)), . . . , ((vk, sk), E(vk, sk))) such that for i = 1, . . . , k, vi ∈ V ,
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si ∈ F (vi), and for i = 1, . . . , k − 1, E(vi, si) = (v, s)⇒ vi+1 = v and si+1 6= s,
is called a path between nodes v1 and vk. A site-graph G is connected, denoted
cc(G) if there exists a path between every two nodes v and v′.

Two site-graphs can be related by an embedding function, which is important
for defining the applicability of a rule to a reaction mixture (cf. Fig. 1).

Definition 4. The embedding σ between site-graphs G = (V, T, F,E, ψ) and
G′ = (V ′, T ′, F ′, E′, ψ′), is induced by a support function σ∗ : V → V ′, if

1. σ∗ is injective: for all v, v′ ∈ V , [σ∗(v) = σ∗(v′) =⇒ v = v′];
2. for all v ∈ V , T (v) = T ′(σ∗(v));
3. for all v ∈ V , [s ∈ F (v) =⇒ s ∈ F ′(σ?(v))];
4. {(v, s) 7→ (v′, s′)} ⊂ E =⇒ {(σ∗(v), s) 7→ (σ∗(v′), s′)} ⊂ E′;
5. {(v, s) 7→ i} ⊂ ψ =⇒ {(σ∗(v), s) 7→ i} ⊂ ψ′.

If σ∗ is bijective, then σ is an isomorphism. The set of embeddings between the
site-graph G and G′ is denoted by embed(G,G′). The set of all embeddings is
denoted by E.

3.2 Rule-based models

Definition 5. Consider three types of elementary transformations of site-graphs,
denoted by δae, δde, δci : E×G→ G, with the following form:

1. δv,s,v
′,s′

ae (σ,G) = (V, T, F,E{(σ∗(v), s) 7→ (σ∗(v′), s′), (σ∗(v′), s′) 7→ (σ∗(v), s)}, ψ)
(adding an edge)

2. δv,sde (σ,G) = (V, T, F,E \ E((σ∗(v), s)) \ (σ∗(v), s), ψ) (deleting an edge);

3. δv,s,ici (σ,G) = (V, T, F,E, ψ{(σ∗(v), s) 7→ i}) (changing the state value),

where G = (V, T, F,E, ψ) ∈ G, σ ∈ E induced by the suport function σ∗ : Vi 7→
V , Vi being a set of nodes such that v, v′ ∈ Vi; v 6= v′, (T (v′), s′) ∈ E(T (v), s),
and i ∈ I(s).

A rule Ri is a triple (G, δ, c), where G is a site-graph, δ is of type δae, δde,
or δci, and c is a non-negative real number. Applying the rule to a site-graph G
is unique for an embedding σ ∈ embed(G,G), and results in G′ = δ(σ,G) (for
a rigorous explanation, see [5]). In particular, for the identity support function
σ∗ = I, and for G = G, we get G′ = δ(I, G), which is sometimes called the
right-hand-side of the rule (cf. Fig. 1).
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3.3 Stochastic Abstract Machine

This subsection defines the syntax and semantics of the abstract formal machine
for our coarse-grained spatial stochastic simulation of rule-based models.

In our machine, a complex is associated to a connected concrete site-graph,
denoted by G, and a 3-D position. The site-graph of a complex can be modified
according to the rules, and may undergo a split into two site-graphs (dissoci-
ation), adding a new complex in the machine; or a merge with another site-
graph (association), removing the other complex from the machine. The radius
of agents a ∈ A is determined by the constant ra, and the radius of the connected
site-graph G is given by rad(G), according to Eq. (4) (Sect. 2.3):

rad((V, T, F,E, ψ)) =

(∑
v∈V

r3T (v)

)1/3

(6)

The syntax of the abstract machine is given in Def. 6. A machine term M is
a quadruple (t, C,X,R) where t is the current time, C is a map from a complex
i to its current site-graph G, X is a map from a complex i to its position x ∈ R3,
and R the set of rules, as defined in Sect. 3.2.

The execution of the machine at time t follows Eq. (7). First, the position
of each complex is updated according to a Brownian diffusion during a fixed
∆t time (diffuse function, Def. 7). Second, the active rules at time t are applied
according to the probabilities introduced in Sect. 2. The new site-graphs and
positions maps give the new term of the machine at time t+∆t.

X ′ = diffuse(X,C,∆t)
(C ′, X ′′) = react(C,X ′,R, ∆t)

(t, C,X,R)→ (t+∆t,C ′, X ′′,R)
(7)

The react function (Def. 12) applies the rules embeddings that are active at
time t in a random order. Each active rule embedding (Def. 11) is specified by
the set of concerned complexes (either one or two), and the quadruple (σ,G, δ, k)
where (G, δ, k) is a rule in R, and σ is the actual embedding being a map from
the nodes of the rule left hand-side G to the nodes of the concrete complex
site-graphs. These rule embeddings gathers the embeddings from any rule in
R to a single complex site-graph C(i) (unary function) or to the union of two
complex site-graphs C(i1)⊕C(i2), assuming that complexes i1 and i2 have their
distance |X(i1)−X(i2)| less than the sum of their radii (neighbors function). A
rule with embedding σ is actually applied if (1) the embedding is still valid, i.e.,
previous rules application have not interfered with it; (2) the random number ζ1
uniformly distributed in [0; 1] is less than the rule probability.

The probability of applying a rule embedding (prob function, Def. 8) depends
on the arity of the reaction and on the modification type, as described in Sect. 2.
The application of rule embedding to the site-graphs and position maps is given
by the do function (Def. 10). In the case of agent site values changes (δci) or an
internal bound creation (δae within one complex i), the embedded rule modifica-
tion is applied to the concerned site-graphs, without any side-effect. In the case
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Stochastic Abstract Machine Definitions

Definition 6. Syntax of the abstract machine. i1, · · · , iN are the complexes identifiers,
assumed all distinct.

M ::= (t, C,X,R) Time t, complex maps C and X, rules R
C ::= {i1 7→ G1, · · · , iN 7→ GN} Map from a complex i to its site-graph G

X ::= {i1 7→ x1, · · · , iN 7→ xN} Map from a complex i to its position x ∈ R3

Definition 7. Euler-Maruyama integration of diffusion. Returns the new position
maps of complexes after a Brownian diffusion during ∆t time, where ζ is a standard
normal random variable, and D0 and r0 are constants (cf. Eq. (1), Sect. 2.2). Note:
state dependent diffusion in different compartments is introduced in Appendix A.

diffuse(X,C,∆t)
∆
= {i 7→| X(i) + ζ

√
2Di∆t | Di = D0 r0/rad(C(i)), i ∈ dom(X)}

Definition 8. Rule probability. The rates k′, k′′ and k̄ refers to the rule rate k mod-
ified according to Sect. 2, agents(δae) refers to the couple of agents concerned by the
bound creation, and rai is the radius of agent ai.

prob({i}, δci, σ, k, C,∆t)
∆
= k′∆t

prob({i}, δde, σ, k, C,∆t)
∆
= k′′∆t if cc(δde(σ,C(i))) else k′∆t

prob({i}, δae, σ, k, C,∆t)
∆
= k̄∆t

∆
=

3k′′∆t

4π(ra1 + ra2)3
if agents(δae) = (a1, a2)

prob({i1, i2}, δ, σ, k, C,∆t)
∆
=

3k′∆t

4π(rad(C(i1)) + rad(C(i2)))3
if i1 6= i2

Definition 9. Complex formation and dissociation. Returns the modified site-graphs
and positions mappings after a merge or a split of complexes. The condition i2 /∈
dom(C) ensures that the new complex i2 is a fresh identifier.

merge(i1, i2, δ, σ, C,X)
∆
= ((C \ i2){i1 7→ δ(σ,C(i1)⊕ C(i2))}, X \ i2)

split(i1, δ, σ, C,X)
∆
= (C{i1 7→ G1, i2 7→ G2}, X{i2 7→ X(i1)})

if i2 /∈ dom(C),G1 ⊕ G2 = δ(σ,C(i1)), cc(G1), cc(G2)

Definition 10. Rule application. Returns the modified site-graphs and positions map-
pings. Predicate cc(G) is true if and only if G is connected (Def. 3, Sect. 3.1).

do(I, δci, σ, C,X)
∆
= (C{i 7→ δci(σ,C(i)) | i ∈ I}, X)

do({i}, δae, σ, C,X)
∆
= (C{i 7→ δae(σ,C(i))}, X)

do({i1, i2}, δae, σ, C,X)
∆
= merge(i1, i2, δae, σ, C,X) if i1 6= i2

do({i}, δde, σ, C,X)
∆
= (C{i 7→ δde(σ,C(i))}, X) if cc(δde(σ,C(i))

do({i}, δde, σ, C,X)
∆
= split(i, δde, σ, C,X) if not cc(δde(σ,C(i))
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Stochastic Abstract Machine Definitions (Continued)

Definition 11. Active embeddings. unary and binary returns the embedding specifica-
tions of rules R to single or couples of complexes, respectively; neighbors returns the
couples of complexes close enough to react; act embeds returns the (I, E) couples where
I is the set of complexes concerned by the embedding specification E.

unary(i, C,R)
∆
= {(σ,G, δ, k) | (G, δ, k) ∈ R, σ ∈ embed(G,C(i))}

binary(i1, i2, C,R)
∆
= {(σ,G, δ, k) | (G, δ, k) ∈ R, σ ∈ embed(G,C(i1)⊕ C(i2)),

σ /∈ embed(G,C(i1)) ∪ embed(G,C(i2))}

neighbors(C,X)
∆
= {{i1, i2} | rad(C(i1)) + rad(C(i2)) ≥ |X(i1)−X(i2)|,

i1, i2 ∈ dom(C), i1 6= i2}

act embeds(C,X,R)
∆
= {({i}, E) | i ∈ dom(C), E ∈ unary(i, C,R)}
∪ {({i1, i2}, E) | {i1, i2} ∈ neighbors(C,X),

E ∈ binary(i1, i2, C,R)}

Definition 12. Sequential application of active rule embeddings, order is assumed to
be random; returns the modified site-graphs and position maps. The set of concerned
complexes is denoted by I, ⊕i∈IC(i) denotes the union of site-graphs of complexes in
I, ζ1 is a random variable uniformly distributed within 0 and 1, and embed is the set
of embeddings from rule left hand-side to reaction mixture (cf. Sect. 3.1).

apply({(I, (σ,G, δ, k))} ∪Q,C,X,∆t) ∆= apply(Q,C,X,∆t)

if σ /∈ embed(G,⊕i∈IC(i))

or ζ1 ≥ prob(I, δ, σ, k, C,∆t)

∆
= apply(Q,C′, X ′,∆t)

if σ ∈ embed(G,⊕i∈IC(i)),

ζ1 < prob(I, δ, σ, k, C,∆t),

(C′, X ′) = do(I, δ, σ, C,X)

apply(∅, C,X,∆t) ∆= (C,X)

react(C,X,R,∆t) ∆= apply(act embeds(C,X,R), C,X,∆t)
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Fig. 2. Comparison of particle-based simulation according to the presented algorithm
(black symbols) and ODE model (red line, see Appendix B) for two test cases: (a) en-
zymatic activation, Test Case 1 and (b) trimerization, Test Case 2. (c) Overview of the
reactions in the ring formation process of example (b), binding sites are omitted here.
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of a complex formation (δae between two complexes i1 and i2), the two com-
plexes are merged into one and receives the position of one of the two complexes
in a non-deterministic manner (merge function, Def. 9). Finally, in the case of
a bond deletion within a complex (δde), unless the site-graph is still connected,
the complex is split in two complexes receiving the same position (split function,
Def. 9).

4 Test Cases and Application

Test Cases: The accuracy of the simulation was tested on the principal reac-
tion motifs of signaling models, where we assume the reaction-limited case for
simplicity, i.e. k = k′ = k′′. The test cases are (in Kappa like syntax, see Fig. 1
for agents and sites):

1. Reversible enzymatic activation A(d) + C(b) 
 A(d1), C(b1),
A(d1), C(b1, au)→ A(d1), C(b1, ap) and C(ap)→ C(au).

2. Reversible trimerization by: A(d) + C(b) 
 A(d1), C(b1),
A(e) + B(g) 
 A(e2), B(g2) and C(c) + B(f) 
 C(c3), B(f3)

Fig. 2 depicts the simulation result which exactly match the ODE models derived
in Appendix B, thus showing the correctness of the approach.

Test Case 2 exemplifies the formation of a ring and the cooperativity of the
bonds in the ring. The ABC trimer can only dissociate if two bonds break and are
open at the same time. For equal binding rate constants k1, equal dissociation
rate constants k2 and under the quasi-steady-state assumption for complexes
with one broken bond the effective dissociation rate constant becomes

k∗ = 6k22/(k̄1 + 2k2) (8)

as shown in Appendix B, Eq. (13). In a ring consisting of N agents the effective
dissociation rate constant k∗ =

(
N(N − 1)k22

)
/
(
k̄1 + (N − 1)k2

)
, will converge

to Nk2, i.e. with rising N the cooperativity vanishes. Especially small rings are
therefore stabilized due to the high bond recovery rate constant k̄. In the present
example k1 = 5× 105M−1s−1, k2 = 0.2s−1, rA = rB = rC = 5nm, DA = DB =
DC = 1µm2/s. Then k̄1 = 198s−1, and k∗ = 0.0012s−1 � k2, i.e. the ring
structure is extremely stable. Diffusion limit kD = 1.51× 108M−1s−1 � k1 i.e.
reaction-limited regime.
Signaling with Scaffolds in Space and Time: In order to exemplify how
the presented method can be used to model signaling in space and time, we
simulate the yeast pheromone response signaling model from Thomson et al.

[20] (see Fig. 3a) up to the MAPK Fus3. In the model the actual signaling
molecules Ste4, Ste11, Ste7 and Fus3 can bind to the scaffold Ste5. In contrast
to Thomson et al. we assume that any activation by the upstream molecule
also involves a possible binding interaction between these molecules – although
that interaction might be weak. The resulting additional bonds, shown in red
in Fig. 3b, enable the formation of three rings around Ste5, which can stabilize
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Fig. 3. (a) Yeast mating MAPK signaling pathway from [20]. (b) Binding and acti-
vation interactions around the scaffold Ste5. Incomplete signaling complexes cannot
transmit the signal and do not include rings, which makes them less stable. (c) Lo-
calization of Ste5 to the plasma membrane. (d) Activation of the MAPK cascade.
The initial fast activation phase of Fus3 takes place in scaffold based complexes that
formed prior to activation. Further activations require that new Ste7-Fus3 pairs form
(diffusion-reaction process) which gives rise to slower kinetics. (e) Visualization of the
complexes in 3D space at t = 184s using ZigCell3D from ScienceVisuals [24]. The trans-
parent spheres with constant radius of 12.5 nm are used for all complexes. Nucleus and
plasma membrane are not shown.

complete signaling complexes. The binding interactions Ste4-Ste11 and Ste11-
Ste7 were omitted in [20] because pheromone response must only be activated if
Ste5 is present. In the present model the binding interaction was weak enough
such that likewise activation requires the presence of Ste5 (data not shown).
Effectively, the bond only establishes along the scaffold, such that crosstalk with
other signaling pathways can be prevented. The arising rings including Ste5 and
the resulting low dissociation due to cooperativity of the bonds in the rings
furthermore makes overexpression of Ste5 less harmful than in [20]. This is due
to the fact that without the bonds parallel to Ste5, each Ste5-Ligand bond would
arise independent of the other ligands. Too many Ste5 instances would therefore
lead to complexes where most likely just 1 ligand is connected to Ste5 such that
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the signaling cascade is disrupted. In contrast, the additional bonds drive the
equilibrium towards complete complexes.

The spatial and temporal dynamics of the activation process in the MAPK
signaling cascade is depicted in Fig. 3c and d. Ste4 is a membrane bound protein,
therefore all complexes containing Ste4 will likewise be membrane bound (cf.
Appendix A). Fig. 3c shows how Ste5 accumulates at the plasma membrane
accordingly. The 3D positions of molecules and complexes in the simulation are
shown in Fig. 3e.

5 Discussion

The present work shows how a simulation for complex signal transduction models
can be implemented, making use of a rule-based model description and includ-
ing biophysical aspects as well as the spatial component. The present algorithm
uses a coarse-grained description and simplified models for binding and dissocia-
tion rate constants on the macro-, micro- and nanoscopic level, thus refining the
simulation method suggested in Meredys [21]. The applied rate constants and
conversion factors as introduced in Sect. 2.1 could be further refined by more de-
tailed models, which e.g. require to solve the reaction-diffusion or corresponding
master equation [17, 18].

An accuracy and performance test of the particle-based simulator core in
[14] shows that the presented method performs at least as good as Smoldyn
[1]. Smoldyn however can handle rule-based models only via the libMoleculizer
plugin. Association and dissociation of complexes require costly graph traversal.
However, associations require that two complexes are in contact, which is a rare
event, and dissociation does not occur more frequently (at steady state). Given
the computational cost of the random walk of the molecules and neighbor finding
alone, the rule-based extension does not dramatically slow down simulation. The
performance of the algorithm can be improved by using a Gillespie scheme (draw
exponential waiting time for reaction event) instead of the Bernoulli trials for
unimolecular reactions as in [15]. In that case also the order of unimolecular
reactions is given by the (ordered) waiting times instead of the random order we
proposed in order to execute all reactions in an unbiased manner. For bimolecular
reactions it is extremely unlikely that more than two complexes are within the
reactive distance such that in most cases there is no ambiguity which reaction
is to be applied. Further improvements of the performance could come from
multi-scale or mixed approaches for different domains of the simulation [13].

The coarse-grained rate constants enable the calculation of emerging prop-
erties like the cooperativity between bonds, that stabilizes rings. In the MAPK
signaling example also rings are formed around the scaffold Ste5. Future work
can analyze the stability of signaling complexes and the dose-response curve for
Ste5 now including the cooperative effect of the bonds. The simulation already
includes localization sites that determine the location of the agents (cytoplasmic
or membrane based as shown in Appendix A). In the future we are planning to
include the transport into the nucleus such that the complete signaling path-
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way can be analyzed. Furthermore formal model checking of spatial rule-based
models has to be included to ensure meaningful models and simulation results.

Additional Information

The appendix is available from http://www.bison.ethz.ch/research/spatial_

simulations_si/CMSB2013_Appendix.pdf and the simulator as well as example
files from http://www.bison.ethz.ch/research/spatial_simulations.
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Appendix A: Spatial Rule-Based Model Checking

The following model has to be checked for undefined diffusion states:
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A modifiable localization site on agents defines their location and mobility type.
The value can be:

0 ‘null’: no diffusion (D = 0), i.e. static position (‘bound to fixed anchor’)
1 ‘pm’: 2D diffusion along the plasma membrane (‘bound to membrane 1’).
2 ‘nm’: 2D diffusion along the nuclear membrane (‘bound to membrane 2’).
3 ‘3D’: 3D diffusion in the cytoplasmic domain (‘unbound’).

However, there can be reachable states with multiple location site values in
one complex. In such a case, the smallest location value determines the behavior
of the whole complex, and the states ‘pm’ and ‘nm’ become conflicting, because
a complex can not safely be diffused along both membranes.

In order to prevent such a conflict, one has to ensure that no complex refer-
encing both ‘pm’ and ‘nm’ location can be formed. While this condition can be
enforced in the abstract machine by assigning a zero the probability to a binding
between a complex with ‘pm’ location and a complex with ‘nm’ location, it is
worth noticing that, in some cases, a conflict-free simulation can be warranted
by static analysis ([6]).

Indeed, from neighbors function (Def. 11), two complexes i1, i2 can merge
only if they are close enough: for any machine term (t, C,X,R), {i1, i2} ∈
neighbors(X,C) ⇔ rad(C(i1)) + rad(C(i2)) ≥ |X(i1) − X(i2)|. Assuming that
complex i1 has location ‘pm’ and complex i2 has location ‘nm’, i2 and i2 may be
merged only if rad(C(i1)) + rad(C(i2)) ≥ d, where d is the minimal distance be-
tween nuclear and plasma membranes. It is hence sufficient that the sum of the
radius of the largest possible complexes i1 and i2 is (strictly) less than d to en-
sure a conflict-free simulation. The largest complexes can be over-approximated
from the contact map of the rule-based model, giving all the possible composit-
ing agents. Note that in some models, it may be possible to have unbounded
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complex sizes: in such a case, the sufficient condition can not be satisfied, and a
dynamical disabling of rules leading to conflict has to be used.

Appendix B: ODE Models for the Test Cases

The following ODEs describe the dynamics of the test cases in the macroscopic,
well mixed limit.

Test Case 1: The reversible dimerization of A and B to AB is described
by the concentration of the 3 species cA, cB and cAB and rates r1 = k1cAcB
for association and r2 = k2cAB for dissociation. In addition the test case case
includes activation from B to B∗ if bound to ’enzyme’ A with rate constant k3
and spontaneous deactivation from B∗ to B with rate constant k4, independent
of whether B∗ is bound to A. The active form B∗ has association and dissociation
rate constants k∗1 and k∗2 respectively. This system has 7 rates, the 2 from above
and r3 = k∗1cAcB∗ , r4 = k∗2cAB∗ , r5 = k3cAB , r6 = k4cAB∗ and r7 = k4cB∗ ,
which determine in the ODE system for the 5 species

ċA = −r1 + r2 − r3 + r4

ċB = −r1 + r2−r0 + r00−r0 + r0 + r7

ċAB = +r1 − r2−r0 + r00 − r5 + r6

ċAB∗ = −r0 + r0 + r3 − r4 + r5 − r6
ċB∗ = −r0 + r0 − r3 + r4−r0 + r0 − r7

Test Case 2: Symmetric binding of A+B, B +C and C +A all with binding
rate constant k1 and dissociation constant k2. The full complex ABC contains
three bonds in a ring structure. If a monomer (e.g A) binds to a dimer (e.g.
BC), two bonds will have to be established accordingly, which is described by
the joint rate constant k3 = 2k1. The bond recovery rate constant k̄1 within the
full complex is given by Equation (5). The rates are

r1 = k1cAcB

r5 = k1cCcA

r9 = k3cCcAB

r13 = k̄1cABC.

r2 = k2cAB

r6 = k2cCA

r10 = k2cABC

r14 = k2cAB.C

r3 = k1cBcC

r7 = k3cAcBC

r11 = k̄1cAB.C

r15 = k2cA.BC

r4 = k2cBC

r8 = k3cBcCA

r12 = k̄1cA.BC

r16 = k2cABC.,

where the dot in ABC denotes the location of the one open bond in the ring.
Corresponding ODE System (where the multiplier in front of the rates has to be
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chosen according to the number of bonds that are affected):

ċA = −r1 + r2 − r5 + r6 − r7+1r0−r0 + r14 + r16

ċB = −r1 + r2 − r3 + r4 − r8+1r0−r0 + r14 + r15

ċC = +r3 − r4 − r5 + r6 − r9+1r0−r0 + r15 + r16

ċAB = +r1 − r2−r0 + r00 − r9+1r0−r0 + r15 + r16

ċBC = +r3 − r4−r0 + r00 − r7+1r0−r0 + r14 + r16

ċCA = +r5 − r6−r0 + r00 − r8+1r0−r0 + r14 + r15

ċABC = −r0 + r0 + r7 + r8 + r9 − 3r10 + r11 + r12 + r13

ċA.BC = −r0 + r00−r0 + r0 + r0 + 1r10 − r11 − 2r14

ċAB.C = −r0 + r00−r0 + r0 + r0 + 1r10 − r12 − 2r15

ċABC. = −r0 + r00−r0 + r0 + r0 + 1r10 − r13 − 2r16 (9)

The three species of the trimer with one broken bond A.BC, AB.C and ABC.
can be removed from the model using a steady state assumption:

– Lump the three states with one broken bond into the species XY Z. with
balance equation in steady state

ċXY Z. = +3k2cABC − k̄1cXY Z. − 2k2cXY Z. = 0. (10)

– Now cXY Z. can be resolved as a function of cABC , namely:

cXY Z. =
3k2

k̄1 + 2k2
cABC . (11)

– The decay of the state ABC is given by the new rate r17 = −3r10+ k̄1cXY Z..
By inserting cXY Z., which was calculated above, the decay rate becomes

r17 = −
(

3k2 − k̄1
3k2

k̄1 + 2k2

)
cABC =

2× 3k22
k̄1 + 2k2

cABC (12)

such that the effective decay rate constant of the trimer is

k∗2 =
6k22

k̄1 + 2k2
. (13)

The solution of the resulting reduced ODE System

ċA = −r1 + r2 − r5 + r6 − r7+r0 + r00 + r17/3

ċB = −r1 + r2 − r3 + r4 − r8+r0 + r00 + r17/3

ċC = +r3 − r4 − r5 + r6 − r9+r0 + r00 + r17/3

ċAB = +r1 − r2−r0 + r00 − r9+r0 + r00 + r17/3

ċBC = +r3 − r4−r0 + r00 − r7+r0 + r00 + r17/3

ċCA = +r5 − r6−r0 + r00 − r8+r0 + r00 + r17/3

ċABC = −r0 + r0 + r0 + r0 + r7 + r8 + r9 − r17 (14)

by Matlab shows only marginal differences if compared with the full system (9).


